Differences between revisions 11 and 13 (spanning 2 versions)
Revision 11 as of 2014-06-16 21:26:17
Size: 2156
Comment:
Revision 13 as of 2014-06-16 22:54:34
Size: 2229
Comment:
Deletions are marked like this. Additions are marked like this.
Line 26: Line 26:
For transfer orbits below geosynchronous, the apogee of the orbit is the release radius $ r_a $, and the angular velocity is $ \omega_E = 2 \pi / P_{sidereal} $, where $ P_{sidereal} $ is the sidereal day, 86164.0905 seconds. We want to find $ r_a $ and the perigee velocity $ v_p $. For transfer orbits below geosynchronous, the apogee of the orbit is the release radius $ r_a $, and the angular velocity is $ \omega_E = 2 \pi / P_{sidereal} $, where $ P_{sidereal} $ is the sidereal day, 86164.0905 seconds. We want to find $ r_a $ and the perigee velocity $ v_p $.  We will have to work backwards.
Line 30: Line 30:
$ v_p = r_a v_a / r_d = \omega_E { r_a }^2 / r_d $ $ {v_a}^2 / 2 \mu = 1 / r_a - 1 / ( r_a + r_p ) $
Line 32: Line 32:
Orbital energy: Solve for $ r_p $, perigee radius, the candidate $ r_d $
Line 34: Line 34:
$ {v_a}^2 - 2 \mu / r_a = {v_p}^2 - 2 \mu / r_d $ $ r_p = \Large { r_a \over { \Large { { \huge { 2 \mu } \over { {r_a}^3 {\omega_E}^2 } } } - 1 } } $
Line 36: Line 36:
Solve for $ r_a $ : Testing empirically with a spreadsheet:
Line 38: Line 38:
$ ( \omega_E r_a )^2 - 2 \mu /r_a = ( \omega_E {r_a}^2 / r_d )^2 - 2 \mu / r_d $ || $ r_a $ || $ r_p $ ||
|| 29 000 || 5 634 || smash! ||
|| 29 790 || 6 378 || earth surface ||
|| 30 000 || 6 678 || 300km altitude ||
|| 34 383 || 12 789 || M288 ||
|| 39 267 || 26 600 || GPS ||
|| 42 164 || 42 164 || GEO ||
|| 50 964 || 384 400 || Moon ||
|| 53 120 || inf || Escape ||
Line 40: Line 48:
Multiply by $ r_a / {\omega_E}^2 {r_d}^3 $ :

$ ( r_a / r_d )^3 - ( 2 \mu / {\omega_E}^2 {r_d}^3 ) = ( r_a / r_d )^5 - ( 2 \mu / {\omega_E}^2 {r_d}^3 ) ( r_a / r_d ) $

Normalize for $ R = r_a / r_d $ and $ M = 2 \mu / ( {\omega_E}^2 {r_d}^3 ) $.

$ R^3 - M = R^5 - M * R $

$ R^5 = R^3 + M * (R - 1) $ ... given M, solve iteratively for R

This "sticks" at R=1, so the iteration should start with a "known in-between" like $ R = 0.5 * ( 1.0 + r_{GEO}/r_d ) $

MoreLater
So, a 20 iteration binary search of $ r_a $ between 29700 km and 53000 km will converge $ r_p $ on our target $ r_d $

Orbit Circularization

What is the ΔV needed for apogee insertion into a circular equatorial orbit from a launch loop transfer orbit, and for perigee insertion from a space elevator transfer orbit?

The destination orbit has a radius of r_d and a velocity of v_d = \sqrt{ \mu / r_d } were \mu = 398600.4418 km3 / s2.


The launch loop calculation is fairly simple.

An 80 kilometer breech altitude launch loop defines a transfer orbit with a perigee r_p = 6378 + 80 km = 6458 km . The semimajor axis is a = 0.5 * ( r_p + r_d ) , the eccentricity e = ( r_d - r_p ) / ( r_d + r_p ) , the characteristic velocity is v_0 = \sqrt{ \mu / ( a * ( 1 - e^2 ) ) } , and the apogee velocity is v_a = ( 1 - e ) v_0 . Combining and simplifying:

{v_a}^2 = ( 1 - e )^2 {v_0}^2 = ( \mu / a ) ( 1 - e )^2 / ( 1 - e^2 )

{v_a}^2 = ( 2 \mu r_p ) / ( r_d ( r_d + r_p ) )

v_a = \sqrt{ ( 2 \mu r_p ) / ( r_d ( r_d + r_p ) ) }

\Delta V = v_d - v_a


The space elevator calculation is more complicated.

For transfer orbits below geosynchronous, the apogee of the orbit is the release radius r_a , and the angular velocity is \omega_E = 2 \pi / P_{sidereal} , where P_{sidereal} is the sidereal day, 86164.0905 seconds. We want to find r_a and the perigee velocity v_p . We will have to work backwards.

v_a = \omega_E r_a

{v_a}^2 / 2 \mu = 1 / r_a - 1 / ( r_a + r_p )

Solve for r_p , perigee radius, the candidate r_d

r_p = \Large { r_a \over { \Large { { \huge { 2 \mu } \over { {r_a}^3 {\omega_E}^2 } } } - 1 } }

Testing empirically with a spreadsheet:

r_a

r_p

29 000

5 634

smash!

29 790

6 378

earth surface

30 000

6 678

300km altitude

34 383

12 789

M288

39 267

26 600

GPS

42 164

42 164

GEO

50 964

384 400

Moon

53 120

inf

Escape

So, a 20 iteration binary search of r_a between 29700 km and 53000 km will converge r_p on our target r_d

OrbitCirc (last edited 2017-03-13 16:20:29 by KeithLofstrom)