Differences between revisions 5 and 9 (spanning 4 versions)
Revision 5 as of 2020-11-12 19:25:59
Size: 466
Comment:
Revision 9 as of 2020-11-12 20:23:23
Size: 3715
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
Launch loops can launch vehicles as fast as escape velocity for "kinetic energy cost", without the expense of large rocket engines and fuel and fuel tanks. Escape velocity at 80 km altitude ( $ r_{launch} =$ 458 km equatorial radius) is $ v_{escape} = \sqrt{ 2 * \mu_0 / r_{launch} } $ = 11.11 km/s = 11,100 m/s, where $ \mu_0 $ is the Earth's standard gravitational parameter, 398600.4418 km^3^/s^2^. Launch loops can launch vehicles as fast as escape velocity for "kinetic energy cost", without the expense of large rocket engines and fuel and fuel tanks. Escape velocity at 80 km altitude ( $ r_{launch} =$ 458 km equatorial radius) is $ v_{escape} = \sqrt{ 2 * \mu_0 / r_{launch} } $ = 11.11 km/s, where $ \mu_0 $ is the Earth's standard gravitational parameter, 398600.4418 km^3^/s^2^. The Earth rotates at 0.47 km/s at launch loop altitudes, so the surface-relative escape velocity is 10.64 km/s.

The kinetic energy cost is proportional mass and velocity squared, $ { 1 \over 2 } m v^2 $ , or 56.6 megajoules per kilogram. A kilowatt-hour (KWh) is 3.6 megajoules, and costs $0.125/kWh on my 2020 Oregon residential power bill, so the launch energy is 15.7 KWh/kg, and costs $1.97 at Oregon residential rates. Rumor has it that Oregon's giant data centers - Google, Apple, Facebook - pay $0.08/kWh industrial rates. However, electric energy costs in the far-from-Oregon equatorial Pacific are indeterminate. Nuclear or Diesel generators on barges? Wind turbines? A tap on a Pacific Ocean spanning PowerLoop? In any case, the power cost will be vastly less than a Tsiolkovsky-exponential-crippled liquid fuel launch rocket.

A high perigee orbit requires less launch velocity than full escape velocity; however, it does require added velocity at apogee to raise perigee far above crowded LEO (Low Earth Orbit). I assume a 2000 km altitude (8378 km radius) perigee will be ample. The apogee of an Earth orbit can be very very high, as far out as the [[ https://en.wikipedia.org/wiki/Hill_sphere Hill Sphere ]], 1.5 million kilometers, though such long period orbits will be strongly perturbed by lunar and solar tides.

Indeed, the perturbations will grow rapidly as apogee altitudes approach lunar orbit radius, [[ https://en.wikipedia.org/wiki/Moon | 356,400 to 406,700 km ]]. Very high apogees should be used carefully, and significant amounts of station-keeping thrust will be needed to maintain them - Master's thesis opportunity?

Angular momentum is proportional to velocity times radius, $ L = v r $, so the cheapest place to "manufacture" angular momentum, turning $ \Delta V $ into $ \Delta L $, is at very high radius $ r $, then launching that angular momentum (as orbiting mass) down to lower orbits. Low cost solutions to the angular momentum manufacturing and distribution problem is another Master's thesis opportunity; my guess is VASIMR plasma thrusters operating at apogee, and orbiting momentum exchange nets.

MoreLater

I will use $Q$ for apogee, $q$ for perigee, and sday

|| || period || semimajor || apogee || apogee V || arrival || perigee || perigee V ||
|| N || $P$ || $a$ || $r_Q$ || $v_Q$ || delta V || $r_Q$ || $v_Q$ ||
|| sdays || seconds || km || km || km/s || km/s || km || km/s ||
|| 1 || 86164.1 || 42164.17 || 75950.34 || 1.02118 || || 8378 || ||
|| 2 || 172328.2 || 66931.45 || 125484.89 || 0.63056 || || 8378 || ||
|| 3 || 258492.3 || 87705.01 || 167032.01 || 0.47745 || || 8378 || ||
|| 4 || 344656.4 || 106247.05 || 204116.10 || 0.39241 || || 8378 || ||
|| 5 || 430820.5 || 123288.78 || 238199.56 || 0.33721 || || 8378 || ||
|| 6 || 516984.5 || 139223.02 || 270068.04 || 0.29802 || || 8378 || ||
|| 7 || 603148.6 || 154291.59 || 300205.17 || 0.26851 || || 8378 || ||

HEEO, High Eccentricity Earth Orbit

Launch loops can launch vehicles as fast as escape velocity for "kinetic energy cost", without the expense of large rocket engines and fuel and fuel tanks. Escape velocity at 80 km altitude ( r_{launch} = 458 km equatorial radius) is v_{escape} = \sqrt{ 2 * \mu_0 / r_{launch} } = 11.11 km/s, where \mu_0 is the Earth's standard gravitational parameter, 398600.4418 km3/s2. The Earth rotates at 0.47 km/s at launch loop altitudes, so the surface-relative escape velocity is 10.64 km/s.

The kinetic energy cost is proportional mass and velocity squared, { 1 \over 2 } m v^2 , or 56.6 megajoules per kilogram. A kilowatt-hour (KWh) is 3.6 megajoules, and costs $0.125/kWh on my 2020 Oregon residential power bill, so the launch energy is 15.7 KWh/kg, and costs $1.97 at Oregon residential rates. Rumor has it that Oregon's giant data centers - Google, Apple, Facebook - pay $0.08/kWh industrial rates. However, electric energy costs in the far-from-Oregon equatorial Pacific are indeterminate. Nuclear or Diesel generators on barges? Wind turbines? A tap on a Pacific Ocean spanning PowerLoop? In any case, the power cost will be vastly less than a Tsiolkovsky-exponential-crippled liquid fuel launch rocket.

A high perigee orbit requires less launch velocity than full escape velocity; however, it does require added velocity at apogee to raise perigee far above crowded LEO (Low Earth Orbit). I assume a 2000 km altitude (8378 km radius) perigee will be ample. The apogee of an Earth orbit can be very very high, as far out as the https://en.wikipedia.org/wiki/Hill_sphere Hill Sphere, 1.5 million kilometers, though such long period orbits will be strongly perturbed by lunar and solar tides.

Indeed, the perturbations will grow rapidly as apogee altitudes approach lunar orbit radius, 356,400 to 406,700 km. Very high apogees should be used carefully, and significant amounts of station-keeping thrust will be needed to maintain them - Master's thesis opportunity?

Angular momentum is proportional to velocity times radius, L = v r , so the cheapest place to "manufacture" angular momentum, turning \Delta V into \Delta L , is at very high radius r , then launching that angular momentum (as orbiting mass) down to lower orbits. Low cost solutions to the angular momentum manufacturing and distribution problem is another Master's thesis opportunity; my guess is VASIMR plasma thrusters operating at apogee, and orbiting momentum exchange nets.

MoreLater

I will use Q for apogee, q for perigee, and sday

period

semimajor

apogee

apogee V

arrival

perigee

perigee V

N

P

a

r_Q

v_Q

delta V

r_Q

v_Q

sdays

seconds

km

km

km/s

km/s

km

km/s

1

86164.1

42164.17

75950.34

1.02118

8378

2

172328.2

66931.45

125484.89

0.63056

8378

3

258492.3

87705.01

167032.01

0.47745

8378

4

344656.4

106247.05

204116.10

0.39241

8378

5

430820.5

123288.78

238199.56

0.33721

8378

6

516984.5

139223.02

270068.04

0.29802

8378

7

603148.6

154291.59

300205.17

0.26851

8378

HEEO (last edited 2020-11-13 01:46:05 by KeithLofstrom)