Differences between revisions 94 and 95
Revision 94 as of 2019-09-17 04:14:14
Size: 1625
Comment:
Revision 95 as of 2019-09-17 04:14:28
Size: 1625
Comment:
Deletions are marked like this. Additions are marked like this.
Line 15: Line 15:
$ { \large -\left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } - \gamma \right) ~-~ 2 \omega_0^2 } } $ $ { \large -\left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \Large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } - \gamma \right) ~-~ 2 \omega_0^2 } } $

Rayleigh Scattering of Isolated Species

( Species == ions, atoms, molecules )

  • See Polarization for the low wavenumber (frequency / speed of light ) approximation used for Rayleigh scattering.

Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, Beers line broadening will not be relevant; the bandwidth \gamma is related to damping time, TBD

  • note: perhaps I can get the relevant numbers from HITRAN, but many of the resonances (especially for tightly bound molecules and deep atomic orbitals) will be far into the ultraviolet, where HITRAN may not go. TBD

The scattering from a single resonator at frequency \omega is (from Feynman Lectures on Physics Chapter X page X) proportional to

{ \Large \int{ \omega^4 \over { ( \omega^2 ~-~ \omega_0^2 )^2 ~-~ \gamma^2 \omega^2 } } } ~= { \large -\left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \Large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } - \gamma \right) ~-~ 2 \omega_0^2 } }


rayleigh (last edited 2019-09-21 06:23:24 by KeithLofstrom)