Differences between revisions 45 and 46
Revision 45 as of 2019-09-17 03:28:42
Size: 1593
Comment:
Revision 46 as of 2019-09-17 03:29:57
Size: 2085
Comment:
Deletions are marked like this. Additions are marked like this.
Line 20: Line 20:

---- /!\ '''Edit conflict - other version:''' ----
Line 23: Line 25:

---- /!\ '''Edit conflict - your version:''' ----
$ \tan^{-1} \left( { \omega \over { \sqrt{ { \LARGE \gamma \over 2 } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right)~-~ \omega_0^2 } } } \right) $

$ \left( { \sqrt{2} \gamma \sqrt{ 4 {\omega_0}^2 + \gamma^2 } \sqrt{ \gamma \left{ \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - 2 \gamma \right) - 2 {\omega_0}^2 } right) } right) $

---- /!\ '''End of edit conflict''' ----

Rayleigh Scattering of Isolated Species

( Species == ions, atoms, molecules )

  • See Polarization for the low wavenumber (frequency / speed of light ) approximation used for Rayleigh scattering.

Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, Beers line broadening will not be relevant; the bandwidth \gamma is related to damping time, TBD

  • note: perhaps I can get the relevant numbers from HITRAN, but many of the resonances (especially for tightly bound molecules and deep atomic orbitals) will be far into the ultraviolet, where HITRAN may not go. TBD

The scattering from a single resonator at frequency \omega is (from Feynman Lectures on Physics Chapter X page X) proportional to

{ \Large\int{ \omega^4 \over { ( \omega^2 ~-~ \omega_0^2 )^2 ~-~ \gamma^2 \omega^2 } } } ~ = ~

\left( 2 \omega_0^4 - 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 + \gamma^2 } - 2 \gamma \right) + \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 + \gamma^2 } \right) \right)



/!\ Edit conflict - other version:


\Large \cos( { \omega \over { \sqrt{ { \LARGE \gamma \over 2 } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right)~-~ \omega_0^2 } } } )

\left( { \sqrt{2} \gamma \sqrt{ 4 {\omega_0}^2 + \gamma^2 } \sqrt{ \gamma \left{ \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - 2 \gamma \right) - 2 {\omega_0}^2 } right) } right)


/!\ Edit conflict - your version:


\tan^{-1} \left( { \omega \over { \sqrt{ { \LARGE \gamma \over 2 } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right)~-~ \omega_0^2 } } } \right)

\left( { \sqrt{2} \gamma \sqrt{ 4 {\omega_0}^2 + \gamma^2 } \sqrt{ \gamma \left{ \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - 2 \gamma \right) - 2 {\omega_0}^2 } right) } right)


/!\ End of edit conflict


rayleigh (last edited 2019-09-21 06:23:24 by KeithLofstrom)