Differences between revisions 132 and 133
Revision 132 as of 2019-09-17 04:56:20
Size: 2434
Comment:
Revision 133 as of 2019-09-17 04:58:04
Size: 2478
Comment:
Deletions are marked like this. Additions are marked like this.
Line 18: Line 18:
[[ https://www.wolframalpha.com/input/?i=integral+of+x%5E4%2F%28%28x%5E2-a%5E2%29%5E2+%2B+x%5E2*b%5E2%29 | using Wolfram alpha ]] [[ https://www.wolframalpha.com/input/?i=integral+of+x%5E4%2F%28%28x%5E2-a%5E2%29%5E2+%2B+x%5E2*b%5E2%29 | using Wolfram alpha ]], and slightly reordered for visual symmetry

Rayleigh Scattering of Isolated Species

( Species == ions, atoms, molecules )

  • See Polarization for the low wavenumber (frequency / speed of light ) approximation used for Rayleigh scattering.

Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, Beers line broadening will not be relevant; the bandwidth ~ \large \gamma ~ is related to damping time, TBD

  • note: perhaps I can get the relevant numbers from HITRAN, but many of the resonances (especially for tightly bound molecules and deep atomic orbitals) will be far into the ultraviolet, where HITRAN may not go. TBD

The scattering from a single resonator at frequency ~ \large \omega ~ is (from Feynman Lectures on Physics Chapter X page X) proportional to

{ \Large \int{ \omega^4 \over { ( \omega^2 ~-~ \omega_0^2 )^2 ~+~ \gamma^2 \omega^2 } } } ~= \omega ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {\Large + } ~~ { { \large \left( 2 \omega_0^4 ~+~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } } {\Large - } ~~ { { \large \left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~+~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma + \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~+~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~+~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } }

using Wolfram alpha, and slightly reordered for visual symmetry


rayleigh (last edited 2019-09-21 06:23:24 by KeithLofstrom)