Processing Math: 100%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 130 and 131
Revision 130 as of 2019-09-17 04:52:51
Size: 2307
Comment:
Revision 131 as of 2019-09-17 04:55:10
Size: 2305
Comment:
Deletions are marked like this. Additions are marked like this.
Line 15: Line 15:
$ {\Large + } ~~ { { \large \left( 2 \omega_0^4 ~+~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~-~  \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } } $
$ {\Large - } ~~ { { \large \left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~+~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma + \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } } $
$ {\Large + } ~~ { { \large \left( 2 \omega_0^4 ~+~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~-~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } } $
$ {\Large - } ~~ { { \large \left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~+~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma + \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) \right) ~~ \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \gamma ~+~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma ~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } ~ \sqrt{ \gamma ~ \left( \gamma ~+~ \sqrt{ \gamma^2 ~-~ 4 \omega_0^2 } \right) ~-~ 2 \omega_0^2 } } } $

Rayleigh Scattering of Isolated Species

( Species == ions, atoms, molecules )

  • See Polarization for the low wavenumber (frequency / speed of light ) approximation used for Rayleigh scattering.

Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, Beers line broadening will not be relevant; the bandwidth     is related to damping time, TBD

  • note: perhaps I can get the relevant numbers from HITRAN, but many of the resonances (especially for tightly bound molecules and deep atomic orbitals) will be far into the ultraviolet, where HITRAN may not go. TBD

The scattering from a single resonator at frequency     is (from Feynman Lectures on Physics Chapter X page X) proportional to

4(2  02)2 + 22 =                                      +  2  2  402    2  402  202204 + 2022  402  2 + 32  402  tan12  2  402  02    2  2  402   + 2  402  202204  2022  402 + 2 + 3+2  402  tan12 + 2  402  02 


rayleigh (last edited 2019-09-21 06:23:24 by KeithLofstrom)