Differences between revisions 1 and 110 (spanning 109 versions)
Revision 1 as of 2019-09-17 02:55:15
Size: 1568
Comment:
Revision 110 as of 2019-09-17 04:28:12
Size: 2285
Comment:
Deletions are marked like this. Additions are marked like this.
Line 9: Line 9:
Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, [[ | Beers line broadening ]] will not be relevant; the bandwidth $ \gamma $ is related to damping time, TBD Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, [[ | Beers line broadening ]] will not be relevant; the bandwidth $ ~ \large \gamma ~ $ is related to damping time, TBD
Line 12: Line 12:
The scattering from a single resonator at frequency $ \omega $ is (from Feynman Lectures on Physics Chapter X page X) proportional to The scattering from a single resonator at frequency $ ~ \large \omega ~ $ is (from Feynman Lectures on Physics Chapter X page X) proportional to
Line 14: Line 14:
$ \integral { \omega^4 \over { ( \omega^2 - {\omega_0}^2 )^2 - \gamma^2 omega^2 } ~ = ~ $ $ { \Large \int{ \omega^4 \over { ( \omega^2 ~-~ \omega_0^2 )^2 ~-~ \gamma^2 \omega^2 } } } ~= \omega ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ $
$ {\Large - } ~~ { { \large \left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ 2 \omega_0^2 } } } $
$ {\Large + } ~~ { { \large \left( 2 \omega_0^4 ~+~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2} ~+~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma + \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ -~ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~+~ \gamma \right) ~-~ 2 \omega_0^2 } } } $
Line 16: Line 18:
$ \left( \left( \left( 2 {\omega_0}^4 - {\omega_0}^2 \gamma \left( \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - 2 \gamma \right)
+ \gamma^3 \left( \gamma - \sqrt{ 4 {\omega_0}^2 + \gamma^2 } \right) \right $
Line 19: Line 19:
$ atan( x \over \sqrt{ { 0.5 \gamma \left( \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - \gamma \right) - {\omega_0}^2 } \right) $

$ \left( { \sqrt{2} \gamma \sqrt{ 4 {\omega_0}^2 + \gamma^2 } \sqrt{ \gamma \left{ \sqrt{ 4 {\omega_0}^2 + \gamma^2 } - 2 \gamma \right) - 2 {\omega_0}^2 } right) } right) $
-----

Rayleigh Scattering of Isolated Species

( Species == ions, atoms, molecules )

  • See Polarization for the low wavenumber (frequency / speed of light ) approximation used for Rayleigh scattering.

Scattering is due to the polarization of species. The polarization can be summed from the behavior of individual resonances and damping factors (related to resonance bandwidth), which I have not yet been able to find. For mostly-isolated atoms in high vacuum, Beers line broadening will not be relevant; the bandwidth ~ \large \gamma ~ is related to damping time, TBD

  • note: perhaps I can get the relevant numbers from HITRAN, but many of the resonances (especially for tightly bound molecules and deep atomic orbitals) will be far into the ultraviolet, where HITRAN may not go. TBD

The scattering from a single resonator at frequency ~ \large \omega ~ is (from Feynman Lectures on Physics Chapter X page X) proportional to

{ \Large \int{ \omega^4 \over { ( \omega^2 ~-~ \omega_0^2 )^2 ~-~ \gamma^2 \omega^2 } } } ~= \omega ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ {\Large - } ~~ { { \large \left( 2 \omega_0^4 ~-~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma - \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ 2 \omega_0^2 } } } {\Large + } ~~ { { \large \left( 2 \omega_0^4 ~+~ 2 \omega_0^2 \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2} ~+~ 2 \gamma \right) ~+~ \gamma^3 \left( \gamma + \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \right) \right) \tan^{-1} \left( { \Large { { \huge \omega } \over { \sqrt{ { \Large { \gamma \over 2 } } \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~-~ \gamma \right) ~-~ \omega_0^2 } } } } \right) } \over { \large \sqrt{ 2 } ~ \gamma \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } \sqrt{ -~ \gamma \left( \sqrt{ 4 \omega_0^2 ~+~ \gamma^2 } ~+~ \gamma \right) ~-~ 2 \omega_0^2 } } }


rayleigh (last edited 2019-09-21 06:23:24 by KeithLofstrom)