Processing Math: 5%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 13 and 14
Revision 13 as of 2020-07-31 17:45:41
Size: 2281
Comment:
Revision 14 as of 2020-07-31 17:46:10
Size: 2275
Comment:
Deletions are marked like this. Additions are marked like this.
Line 35: Line 35:
$ H ~=~ \rho(z) v^3 ~=~ H_e ~ \times ~ t / t_e $ $ H ~=~ \rho(z) ~ v^3 ~=~ H_e ~ t / t_e $

Track Slope

Assume a maximum exit velocity a little larger than Earth escape (11.2 km/s) at 6458 km radius, 80 km altitude, near the equator. At that radius, the Earth's rotation velocity is 0.47 km/s ( 2π × 6458 km / 86414s ), so the maximum atmosphere-relative velocity (ignoring wind and adding drag loss) is 10.8 km/s. We will compute track slope backwards from that.

Loop inclination - the angle to the equator - will probably be between 10 and 30 degrees, To Be Determined.

Atmosphere Density Model

Altitude

Density

Scale Height

Average

km

kg/m3

km

km to 80

80 km

1.85e-5

6.33

6.33

70 km

8.28e-5

7.14

6.7

60 km

3.10e-4

8.02

7.1

50 km

1.03e-3

8.14

7.5

Linear Heating Profile

a

vehicle acceleration

d

vehicle distance along track

d_e

vehicle exit distance

v

vehicle velocity along track

v_e

vehicle exit velocity

H

vehicle heating (relative)

H_e

vehicle exit heating

t

time from start of launch run

t_e

exit time

\rho

atmospheric density

\rho_e

exit atmospheric density

z

vehicle/track altitude

z_e

exit altitude

  • Assume constant 3 gee acceleration ( a = 29.4 m/s²) to earth-relative escape velocity at exit altitude z_e = 80 km ( v_x = 10.8 km/s ), and a heating rate proportional to time on the track.

  • Assume that the track altitude is lower near the beginning of the acceleration run, and is designed to increase with distance (and thus velocity) to produce that heating profile.
  • Assume classical drag heating H = \rho v^3 proportional to density and velocity cubed.

An escape velocity run to v_e = 10800 m/s will last t_x = 10800/29.4 = 367 seconds. Most launches will be to high earth orbits, a slightly shorter launch run.

H ~=~ \rho(z) ~ v^3 ~=~ H_e ~ t / t_e

TrackSlope (last edited 2020-08-30 23:40:35 by KeithLofstrom)