Differences between revisions 3 and 4
Revision 3 as of 2017-03-23 20:21:44
Size: 1273
Comment:
Revision 4 as of 2017-03-23 21:56:54
Size: 2014
Comment:
Deletions are marked like this. Additions are marked like this.
Line 8: Line 8:
|| $ r = { \Large { { a ( 1 - e² ) } \over { 1 + e \cos( \theta ) } } } $ || $ a = { \Large { r_a + r_p } \over 2 } ~ ~ ~ ~ e = { \Large { { r_a - r_p } \over { r_a + r_p } } } ~ ~ ~ ~ ~ ~ \phi $ is inclination $ ~ ~ ~ ~ ~ ~ \theta $ is orbital angle || || $ r = { \Large { { a ( 1 - e² ) } \over { 1 + e \cos( \theta ) } } } $ || $ a = { \Large { { r_a + r_p } \over 2 } } ~ ~ ~ ~ e = { \Large { { r_a - r_p } \over { r_a + r_p } } } ~ ~ ~ ~ ~ ~ \phi $ is inclination $ ~ ~ ~ ~ ~ ~ \theta $ is orbital angle ||
Line 14: Line 14:
|| $ r = a ( 1 - e² ) $ || $ v_t = v_0 \cos( \phi ) $ || $ $ v_r = e v_0 $ || $ v_z = v_0 \sin( \phi ) $ || || $ r = a ( 1 - e² ) $ || $ v_t = v_0 \cos( \phi ) $ || $ v_z = v_0 \sin( \phi ) $ || $ v_r = e v_0 $ ||

These simplify to:

|| $ r = { \Large { { 2 r_a r_p } \over { r_a + r_p } } } $ || $ v_0 = \sqrt{ \Large { \mu \over r } } $ || $ v_t = v_0 \cos( \phi ) $ || $ v_z = v_0 \sin( \phi ) $ || $ v_r = e v_0 $ ||

Note that $ v_0 $ is the circular orbit velocity at radius $ r $.

Assume a launch loop at 5° south latitude with a altitude of 100 km and a perigee radius of 6478 km. What are the equator crossing velocities relative to circular orbits?

||<-2> Destination ||<-5> plane crossing $\Delta$ V compared to circular ||
|| || radius || $ r_0 $ || $ v_0 $ || $ v_t $ || $ v_z $ || $ v_r $ ||
|| || km || km || km/s || km/s || km/s || km/s ||
|| ISS || 6800 ||

Plane Crossing Velocity

Launch loops will be located slightly south of the equator, so they will launch into latitude-inclined transfer orbits, crossing other circular equatorial orbits. What is the relative velocity compared to an object in a circular equatorial orbit?

The launch orbit has a perigee of r_p and an apogee of r_a . Earth's standard gravitational parameter \mu = 398600.44 km³/s². The orbital radius and velocity are:

r = { \Large { { a ( 1 - e² ) } \over { 1 + e \cos( \theta ) } } }

a = { \Large { { r_a + r_p } \over 2 } } ~ ~ ~ ~ e = { \Large { { r_a - r_p } \over { r_a + r_p } } } ~ ~ ~ ~ ~ ~ \phi is inclination ~ ~ ~ ~ ~ ~ \theta is orbital angle

tangential v_t = v_0 ( 1 + e \cos( \theta ) ) \cos( \phi )

v_0 = \Large { \sqrt{ { \mu \over 2 } \left( { 1 \over r_a } + { 1 \over r_p } \right) } }

radial v_r = e v_0 \sin( \theta )

north/south v_z = v_0 ( 1 + e \cos( \theta ) ) \sin( \phi )

The transfer orbit crosses the equatorial plane at \theta = \pi/2 = 90 degrees, the semi latus rectum, so the equations simplify to:

r = a ( 1 - e² )

v_t = v_0 \cos( \phi )

v_z = v_0 \sin( \phi )

v_r = e v_0

These simplify to:

r = { \Large { { 2 r_a r_p } \over { r_a + r_p } } }

v_0 = \sqrt{ \Large { \mu \over r } }

v_t = v_0 \cos( \phi )

v_z = v_0 \sin( \phi )

v_r = e v_0

Note that v_0 is the circular orbit velocity at radius r .

Assume a launch loop at 5° south latitude with a altitude of 100 km and a perigee radius of 6478 km. What are the equator crossing velocities relative to circular orbits?

Destination

plane crossing \Delta V compared to circular

radius

r_0

v_0

v_t

v_z

v_r

km

km

km/s

km/s

km/s

km/s

ISS

6800

PlaneCrossV (last edited 2017-03-25 06:55:45 by KeithLofstrom)