Scaling Robots for the Moon

The Moon is a terrible place for human habitability. 0.1654 gees gravity and 1738 km ( 0.2725 Earth) equatorial radius, zero radiation protection, no beneficiated resources, and practically no water (< 100ppm compared to 25% humidity in the Sahara) where it has been detected. Compared to the Moon, deserts, polar icecaps, and deep ocean trenches are human paradises. Even Low Earth Orbit is relatively benign - closer to resources, closer to home, protected by the van Allen belt, and suitable for one gee rotating cylinder habitats.

But what about robots? Robots already have a much longer track record on the Moon than humans, are one-way expendible, and are vastly less expensive. Humanoid robots with interchangeable parts and very high bandwidth to Earth probably make more sense. And robots can be scaled. Scaling robots for human response times and capabilities is the subject of this web page.

Assumptions

Scaling Factors

Sizes, speeds and accelerations should all be scaled to scaling factor

s = g_m / g_e
= 0.1654, so that perceived velocities and "the time it takes to fall" are the same as Earth:

Implying that:

MoreLater