Size: 3347
Comment:
|
Size: 3850
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 19: | Line 19: |
|| $ H_{GEO} $ || GEO Angular momentum/kg || 1.2964E+11 || m^2^/s || | || $ H_{GEO} $ || GEO Angular momentum/kg || 1.2964E+11 || m^2^/s || |
Line 23: | Line 23: |
|| $ E_{288} $ || M288 Energy/kg || -4.6751244E+07 || J/kg || || $ H_{288} $ || M288 Angular momentum/kg || 7.1398E+10 || m^2^/s || |
|| $ E_{288} $ || M288 energy/kg || -4.6751244E+07 || J/kg || || $ H_{288} $ || M288 angular momentum/kg || 7.1398E+10 || m^2^/s || |
Line 28: | Line 28: |
|| $ E_m $ || Lunar escape energy || 2.8207037 || MJ/kg || | || $ E_{m-esc}$ || Lunar escape energy || 2.8207037 || MJ/kg || |
Line 33: | Line 33: |
|| $ E_m $ || Lunar orbit energy/kg || -5.13522E+05 || J/kg || || $ H_m $ || Lunar angular momentum/kg || 3.93300E+11 || m^2^/s || |
|
Line 40: | Line 42: |
|| $E_{m-GEO} $ || Lunar-GEO energy/kg || -9.34446E+05 || J/kg || || $H_{m-GEO} $ || Lunar-GEO angular momentum/kg || 1.74042E+11 || m^2^/s || ||$\omega_{m-G}$|| Lunar-GEO angular freq @ moon || 1.17785E-06 || radians/s|| ||$\omega_{G-m}$|| Lunar-GEO angular freq @ GEO || 9.78967E-05 || radians/s|| |
Lunar Material and Momentum Supply
I am skeptical about high tech manufacturing in space, especially in the dusty lunar environment. Factories are big, and need a lot of PhDs to keep them running. 100 years from now, there will be many such factories in space, but for now, we have problems locating them in most countries around the world, where there is air and water and food and FedEx.
Assuming we can get material launched from the moon ( 5.5% of the escape energy and launch loop track length ), there are plenty of uses for deadweight mass in space, as ballast and as a source of momentum. Earth launch is expensive, and is deficient in angular momentum compared to destination orbits.
Earth and Moon and interesting orbits |
|||
Earth |
|||
\mu_e |
Earth gravitational parameter |
3.986004418e+14 |
m3/s2 |
r_E |
Earth equatorial radius |
6378137 |
m |
E_e |
Earth escape energy |
-62.494807 |
MJ/kg |
\omega_e |
Earth angular frequency |
7.29211515e-5 |
radians/s |
Geostationary orbit |
|||
r_{GEO} |
GEO radius |
42164172.4 |
m |
v_{GEO} |
GEO velocity |
3074.66 |
m/s |
E_{GEO} |
GEO Energy/kg |
-1.41803E+07 |
J/kg |
H_{GEO} |
GEO Angular momentum/kg |
1.2964E+11 |
m2/s |
M288 Server Sky orbit |
|||
r_{288} |
M288 radius |
12788978 |
m |
v_{288} |
M288 velocity |
5582.79 |
m/s |
E_{288} |
M288 energy/kg |
-4.6751244E+07 |
J/kg |
H_{288} |
M288 angular momentum/kg |
7.1398E+10 |
m2/s |
Moon |
|||
\mu_m |
Lunar gravitational parameter |
4.9027779e+12 |
m3/s2 |
r_m |
Lunar equatorial radius |
1738140 |
m |
E_{m-esc} |
Lunar escape energy |
2.8207037 |
MJ/kg |
a_m |
Lunar orbit semi-major axis |
384399000 |
m |
v_m |
Lunar orbit velocity |
1023.155 |
m/s |
t_m |
Lunar orbit period |
2360591.5 |
seconds |
\omega_m |
Lunar orbit angular frequency |
2.66169954e-6 |
radians/s |
E_m |
Lunar orbit energy/kg |
-5.13522E+05 |
J/kg |
H_m |
Lunar angular momentum/kg |
3.93300E+11 |
m2/s |
Hohmann orbit, moon to GEO r_a = a_m r_p = r_{GEO} |
|||
a_{m-GEO} |
Lunar-GEO semi-major axis |
213281586 |
m |
e_{m-GEO} |
Lunar-GEO eccentricity |
0.8023075 |
|
v_{a-m-GEO} |
Lunar-GEO apogee velocity |
452.7650 |
m/s |
v_{l-m-GEO} |
Lunar-GEO launch velocity |
-2442.6935 |
m/s |
v_{p-m-GEO} |
Lunar-GEO perigee velocity |
4127.7325 |
m/s |
v_{i-m-GEO} |
Lunar-GEO insertion velocity |
-1053.0725 |
m/s |
E_{m-GEO} |
Lunar-GEO energy/kg |
-9.34446E+05 |
J/kg |
H_{m-GEO} |
Lunar-GEO angular momentum/kg |
1.74042E+11 |
m2/s |
\omega_{m-G} |
Lunar-GEO angular freq @ moon |
1.17785E-06 |
radians/s |
\omega_{G-m} |
Lunar-GEO angular freq @ GEO |
9.78967E-05 |
radians/s |
MORE LATER