Size: 3347
Comment:
|
Size: 3347
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 33: | Line 33: |
||<-4>Hohmann orbit from moon to GEO ` ` $r_a = a_m ~ ~ ~ ~ r_p = r_{GEO} $ || | ||<-4>Hohmann orbit from moon to GEO` `$r_a = a_m$` `$r_p = r_{GEO}$|| |
Lunar Material and Momentum Supply
I am skeptical about high tech manufacturing in space, especially in the dusty lunar environment. Factories are big, and need a lot of PhDs to keep them running. 100 years from now, there will be many such factories in space, but for now, we have problems locating them in most countries around the world, where there is air and water and food and FedEx.
Assuming we can get material launched from the moon ( 5.5% of the escape energy and launch loop track length ), there are plenty of uses for deadweight mass in space, as ballast and as a source of momentum. Earth launch is expensive, and is deficient in angular momentum compared to destination orbits.
Earth and Moon and interesting orbits |
|||
Earth |
|||
\mu_e |
Earth gravitational parameter |
3.986004418e+14 |
m3/s2 |
r_E |
Earth equatorial radius |
6378137 |
m |
E_e |
Earth escape energy |
-62.494807 |
MJ/kg |
\omega_e |
Earth angular frequency |
7.29211515e-5 |
radians/s |
Geostationary orbit |
|||
r_{GEO} |
GEO radius |
42164172.4 |
m |
v_{GEO} |
GEO velocity |
3074.66 |
m/s |
E_{GEO} |
GEO Energy/kg |
-1.41803E+07 |
J/kg |
H_{GEO} |
GEO Angular momentum/kg |
1.2964E+11 |
m2/s |
M288 Server Sky orbit |
|||
r_{288} |
M288 radius |
12788978 |
m |
v_{288} |
M288 velocity |
5582.79 |
m/s |
E_{288} |
M288 Energy/kg |
-4.6751244E+07 |
J/kg |
H_{288} |
M288 Angular momentum/kg |
7.1398E+10 |
m2/s |
Moon |
|||
\mu_m |
Lunar gravitational parameter |
4.9027779e+12 |
m3/s2 |
r_m |
Lunar equatorial radius |
1738140 |
m |
E_m |
Lunar escape energy |
2.8207037 |
MJ/kg |
a_m |
Lunar orbit semi-major axis |
384399000 |
m |
v_m |
Lunar orbit velocity |
1023.155 |
m/s |
t_m |
Lunar orbit period |
2360591.5 |
seconds |
\omega_m |
Lunar orbit angular frequency |
2.66169954e-6 |
radians/s |
Hohmann orbit from moon to GEO r_a = a_m r_p = r_{GEO} |
|||
a_{m-GEO} |
Lunar-GEO semi-major axis |
213281586 |
m |
e_{m-GEO} |
Lunar-GEO eccentricity |
0.8023075 |
|
v_{a-m-GEO} |
Lunar-GEO apogee velocity |
452.7650 |
m/s |
v_{l-m-GEO} |
Lunar-GEO launch velocity |
-2442.6935 |
m/s |
v_{p-m-GEO} |
Lunar-GEO perigee velocity |
4127.7325 |
m/s |
v_{i-m-GEO} |
Lunar-GEO insertion velocity |
-1053.0725 |
m/s |
MORE LATER