Hypervelocity Drag

Based on Trajectory Optimization for an Apollo-type Vehicle under Entry Conditions Encountered During Lunar Returm by John W. Young (famous astronaut) and Robert E. Smith Jr., May 1967, NASA TR-R-258, Langley Research Center.

Equations on Page 5 in Foot-second-slug-BTU :

Density in slugs/ft3: multiply kg/m3 by 1.9403203e-3

Power in Btu/ft2-s: multiply by 11350.54 to get W/m2

Velocity in ft/s: divide m/s by 0.3048

Metric equations:

These are for a 1 foot diameter nose, and scale by {r_n}^{-1/2} according to equation 4B-4 on page 520 of Part 4B (Entry Heat Transfer) of the SAE Aerospace Applied Thermodynamics Manual. That sites reference 1, A study of the motion and aerodynamic heating of missiles entering the earth's atmosphere at high supersonic speeds, H. Julian Allen and A. J. Eggers, Jr, NACA TN 4047, 1957. If r_n is in meters, scale by 0.552 {r_n}^{-1/2} .

If we scale these for a half-spherical nose, area \pi {r_n}^2 , we get:

Examples:

For a 1 meter diameter nose, and density at 80, 100, and 120 km:

altitude km

80

100

120

density kg/m3

1.846e-5

5.604e-7

2.222e-8

\dot Q_c W

\dot Q_c @