1745
Comment:
|
2371
|
Deletions are marked like this. | Additions are marked like this. |
Line 22: | Line 22: |
. Metric 1a convective power: $ ~ ~ \dot Q_c = $ 3.53e-4 $ \rho^{1/2} ~ V^3 $ | . Metric 1a convective power: $ ~ ~ \dot Q_c = $ 3.53e-4 $ \rho^{1/2} ~ V^3 $ Watts . Metric 1b radiative power: $ ~ ~ \dot Q_r = $1.24e-69 $ \rho^{3/2} ~ V^{20} $ Watts |
Line 24: | Line 25: |
. Metric 1b radiative power: $ ~ ~ \dot Q_r = $1.24e-69 $ \rho^{3/2} ~ V^{20} $ | These are for a 1 foot diameter nose, and scale by $ {r_n}^{-1/2} $ according to equation 4B-4 on page 520 of Part 4B (Entry Heat Transfer) of the SAE Aerospace Applied Thermodynamics Manual. That sites reference 1, [[ http://hdl.handle.net/2060/19930084817 | A study of the motion and aerodynamic heating of missiles entering the earth's atmosphere at high supersonic speeds ]], H. Julian Allen and A. J. Eggers, Jr, NACA TN 4047, 1957. If $ r_n $ is in meters, scale by 0.552 $ {r_n}^{-1/2} $. |
Line 26: | Line 27: |
These are for a 1 foot diameter nose, and scale by $ r_n^0.5 $ according to equation 4B-4 on page 520 of Part 4B (Entry Heat Transfer) of the SAE Aerospace Applied Thermodynamics Manual. That sites reference 1, [[ http://hdl.handle.net/2060/19930084817 | A study of the motion and aerodynamic heating of missiles entering the earth's atmosphere at high supersonic speeds ]], H. Julian Allen and A. J. Eggers, Jr, NACA TN 4047, 1957. | If we scale these for a half-spherical nose, area $ \pi {r_n}^2 $, we get: . Total nose convective power: $ ~ ~ \dot Q_c = $ 6.1e-4 $ ( {r_n}^3 ~ \rho )^{1/2} ~ V^3 $ Watts . Total nose radiative power: $ ~ ~ \dot Q_r = $ 2.2e-69 $ ( {r_n} ~ \rho )^{3/2} ~ V^{20} $ Watts '''Examples:''' For a 1 meter diameter nose, and density at 80, 100, and 120 km: || altitude km || 80 || 100 || 120 || || density kg/m^3^ || 1.846e-5 || 5.604e-7 || 2.222e-8 || || $ \dot Q_c $ W || || || || $ \dot Q_c $ @ || || || |
Hypervelocity Drag
Based on Trajectory Optimization for an Apollo-type Vehicle under Entry Conditions Encountered During Lunar Returm by John W. Young (famous astronaut) and Robert E. Smith Jr., May 1967, NASA TR-R-258, Langley Research Center.
Equations on Page 5 in Foot-second-slug-BTU :
1a convective power: ~ ~ \dot Q_c = 20 \rho^{1/2} \left( V \over 1000 \right)^3 Btu/ft2-s
1b radiative power: ~ ~ \dot Q_r = 6.1 \rho^{3/2} \left( V \over { 10 000 } \right)^{20} Btu/ft2-s
- Equations assume an effective nose radius of 1 foot
Equations from Shock Layer Radiation During Hypervelocity Re-Entry by Robert M. Nerem and George H. Stickford, AIAA Entry Technology Conference, CP-9, American Institute of Aeronautics and Astronautics, Oct. 1964, pp 158-169. (not downloaded yet)
Density in slugs/ft3: multiply kg/m3 by 1.9403203e-3
Power in Btu/ft2-s: multiply by 11350.54 to get W/m2
Velocity in ft/s: divide m/s by 0.3048
Metric equations:
Metric 1a convective power: ~ ~ \dot Q_c = 3.53e-4 \rho^{1/2} ~ V^3 Watts
Metric 1b radiative power: ~ ~ \dot Q_r = 1.24e-69 \rho^{3/2} ~ V^{20} Watts
These are for a 1 foot diameter nose, and scale by {r_n}^{-1/2} according to equation 4B-4 on page 520 of Part 4B (Entry Heat Transfer) of the SAE Aerospace Applied Thermodynamics Manual. That sites reference 1, A study of the motion and aerodynamic heating of missiles entering the earth's atmosphere at high supersonic speeds, H. Julian Allen and A. J. Eggers, Jr, NACA TN 4047, 1957. If r_n is in meters, scale by 0.552 {r_n}^{-1/2} .
If we scale these for a half-spherical nose, area \pi {r_n}^2 , we get:
Total nose convective power: ~ ~ \dot Q_c = 6.1e-4 ( {r_n}^3 ~ \rho )^{1/2} ~ V^3 Watts
Total nose radiative power: ~ ~ \dot Q_r = 2.2e-69 ( {r_n} ~ \rho )^{3/2} ~ V^{20} Watts
Examples:
For a 1 meter diameter nose, and density at 80, 100, and 120 km:
altitude km |
80 |
100 |
120 |
density kg/m3 |
1.846e-5 |
5.604e-7 |
2.222e-8 |
\dot Q_c W |
|
|
|
\dot Q_c @ |
|
|