Differences between revisions 3 and 4
Revision 3 as of 2016-08-04 01:58:06
Size: 1394
Comment:
Revision 4 as of 2016-08-07 03:18:30
Size: 1598
Comment:
Deletions are marked like this. Additions are marked like this.
Line 10: Line 10:
John David Anderson Jr 2000 AIAA page numbers in concatenated pdf John David Anderson Jr 2000 AIAA '''page numbers in book, pdf+6
Line 12: Line 12:
 .p11 Apollo reentry Mach 36
 .p19 M36 15 degree cone, 3 degree shock layer
 .p05 Apollo reentry Mach 36
 .p13 M36 15 degree cone, 3 degree shock layer
Line 15: Line 15:
 .p21 boundary layer thickness $ \delta ~ \propto ~ {M_∞}^2 / \sqrt{ R_{e_x} }$ where $ R_{e_x} $ is the local Reynolds number
 .p22 Reynolds number ... per foot?
 .p23 Apollo reentry Mach 36, 52 km altitude, 11000 Kelvin (40x denser than 80 km, 1200x denser than 100 km)
 .p24 chemically reacting gas is colder
 .p25 O₂ dissociates at 2000K to 4000K, N₂ 4000K to 9000K, above that ions
 .p25 convective heating $q_c$, radiative heating $q_r$ 30% for Apollo
 .p26 100 km, low density flow, "velocity slip" and "temperature slip" at surface
 .p26 higher still, not continuum, use kinetic theory. At 150 km, free molecular regime
 .p27 Knudsen number, $ Kn = \lambda/L $ where $ \lambda = $ mean free path, $ L = $ characteristic length
 .p15 boundary layer thickness $ \delta ~ \propto ~ {M_∞}^2 / \sqrt{ R_{e_x} }$ where $ R_{e_x} $ is the local Reynolds number
 .p16 Reynolds number ... per foot?
 .p17 Apollo reentry Mach 36, 52 km altitude, 11000 Kelvin (40x denser than 80 km, 1200x denser than 100 km)
 .p18 chemically reacting gas is colder
 .p19 O₂ dissociates at 2000K to 4000K, N₂ 4000K to 9000K, above that ions
 .p19 convective heating $q_c$, radiative heating $q_r$ 30% for Apollo
 .p20 100 km, low density flow, "velocity slip" and "temperature slip" at surface
 .p20 higher still, not continuum, use kinetic theory. At 150 km, free molecular regime
 .p21 Knudsen number, $ Kn = \lambda/L $ where $ \lambda = $ mean free path, $ L = $ characteristic length
Line 25: Line 25:
 .p29 $ p $ surface pressure, $ \tau $ shear stress (viscous flow phenomena)  .p23 $ p $ surface pressure, $ \tau $ shear stress (viscous flow phenomena)
 .p26 heat conduction $ q_w ~ = -k_w \left( { { \partial T } \over { \partial y } } \right)_w $ ... more in Part 2
 .p26 radiation 30% Apollo, shock layer 11,000K ... more Chapter 18
 .

 





Hypersonic Notes


  • inviscid - laminar, low turbulence, low Reynolds number
  • Modern compressible flow : with historical perspective John David Anderson, Jr 1982 PSU QA911 .A6

Hypersonic and High Temperature Gas Dynamics

John David Anderson Jr 2000 AIAA page numbers in book, pdf+6

  • p05 Apollo reentry Mach 36
  • p13 M36 15 degree cone, 3 degree shock layer
    • calorically perfect gas, γ = cp/cv = 1.4 ratio of specific heats

  • p15 boundary layer thickness \delta ~ \propto ~ {M_∞}^2 / \sqrt{ R_{e_x} } where R_{e_x} is the local Reynolds number

  • p16 Reynolds number ... per foot?
  • p17 Apollo reentry Mach 36, 52 km altitude, 11000 Kelvin (40x denser than 80 km, 1200x denser than 100 km)
  • p18 chemically reacting gas is colder
  • p19 O₂ dissociates at 2000K to 4000K, N₂ 4000K to 9000K, above that ions
  • p19 convective heating q_c, radiative heating q_r 30% for Apollo

  • p20 100 km, low density flow, "velocity slip" and "temperature slip" at surface
  • p20 higher still, not continuum, use kinetic theory. At 150 km, free molecular regime
  • p21 Knudsen number, Kn = \lambda/L where \lambda = mean free path, L = characteristic length

    • Kn 0.001? to 0.3 Navier-Stokes

  • p23 p surface pressure, \tau shear stress (viscous flow phenomena)

  • p26 heat conduction q_w ~ = -k_w \left( { { \partial T } \over { \partial y } } \right)_w ... more in Part 2

  • p26 radiation 30% Apollo, shock layer 11,000K ... more Chapter 18
  • p795 references

Hypersonic (last edited 2016-08-07 03:19:03 by KeithLofstrom)