Differences between revisions 7 and 9 (spanning 2 versions)
Revision 7 as of 2017-10-28 04:05:42
Size: 3020
Comment:
Revision 9 as of 2017-10-28 04:12:03
Size: 3212
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
Assume gravitational constant $ G $, radius $ r $, line density $ \rho $, and perpendicular axis $ z $. Calculate the radial gravitational acceleration $ a $. Assume gravitational constant $ G $, radius $ r $, line density $ { \large \rho } $, and perpendicular axis $ z $. Calculate the radial gravitational acceleration $ a $.
Line 8: Line 8:
Assume a mass element $ dm = \rho dz $ at position $ z $. The distance between the particle and the mass element is $ the hypotenuse $ h = \sqrt{ r^2 + z^2 } The diagonal gravitational acceleration towards $ dm $ is Assume a mass element $ dm = { \large \rho } dz $ at position $ z $. The distance between the particle and the mass element is $ the hypotenuse $ h = \sqrt{ r^2 + z^2 } The diagonal gravitational acceleration towards $ dm $ is
Line 10: Line 10:
Eq 1: $ da_d = G \rho dz / h^2 dz ~ = ~ G \rho / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ $ in the diagonal direction Eq 1: $ da_d = G { \large \rho } dz / h^2 dz ~ = ~ G { \large \rho } / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ $ in the diagonal direction
Line 18: Line 18:
Eq 3: $ da_d = cos() G \rho r / ( r^2 + z^2 )^{3/2} dz $ Eq 3: $ da_r = cos() G { \large \rho } r / ( r^2 + z^2 ) ~ dz ~ = ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz $
Line 22: Line 22:
Eq 4: $ a_d = {\Large \int_{-\infty}^{+\infty}} ~ da_d = {\Large \int_{-\infty}^{+\infty}} ~ G \rho r / ( r^2 + z^2 )^{3/2} dz $ Eq 4: $ a_r = {\Large \int_{-\infty}^{+\infty}} ~ da_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz $
Line 26: Line 26:
Eq 5: $ a_d = {\Large \int_{-\infty}^{+\infty}} ~ G \rho r / ( r^2 + (z' r)^2 )^{3/2} r dz' $ Eq 5: $ a_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + (z' r)^2 )^{3/2} ~ r ~ dz' $
Line 30: Line 30:
Eq 6: $ a_d = G \rho {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^2 ( 1 + {z'}^2 ))^{3/2} ~ r dz' $ Eq 6: $ a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^2 ( 1 + {z'}^2 ))^{3/2} ~ r ~ dz' $
Line 32: Line 32:
Eq 7: $ a_d = G \rho {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^3 ( 1 + {z'}^2)^{3/2} ) ~ r dz' $ Eq 7: $ a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^3 ( 1 + {z'}^2)^{3/2} ) ~ r ~ dz' $
Line 34: Line 34:
Eq 8: $ a_d = G \rho ( r^2 / r^3 ) {\Large \int_{-\infty}^{+\infty}}~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' $ Eq 8: $ a_d = G { \large \rho } ( r^2 / r^3 ) {\Large \int_{-\infty}^{+\infty}}~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' $
Line 36: Line 36:
Eq 9: $ a_d = ( G \rho / r ) {\Large \int_{-\infty}^{+\infty}} ~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' $ Eq 9: $ a_d = ( G { \large \rho } / r ) {\Large \int_{-\infty}^{+\infty}} ~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' $
Line 44: Line 44:
Eq 10: $ a_d = 2 G \rho / r $ Eq 10: $ a_d = 2 G { \large \rho } / r $

Gravity Field of a Filament Perpendicular to a galaxy

Integrate the gravitational acceleration from an object at radius r toward a line mass perpendicular to its orbit.

Assume gravitational constant G , radius r , line density { \large \rho } , and perpendicular axis z . Calculate the radial gravitational acceleration a .

Assume a mass element dm = { \large \rho } dz at position z . The distance between the particle and the mass element is the hypotenuse h = \sqrt{ r2 + z2 } The diagonal gravitational acceleration towards dm is

Eq 1: da_d = G { \large \rho } dz / h^2 dz ~ = ~ G { \large \rho } / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ in the diagonal direction

This is force is diagonal to the center of the particle's orbit; however, we are only concerned with the force component towards the center in the radial direction, because there is equal mass in the plus and minus z direction. Hence, we only care about the "cosine" component in the radial direction,

Eq 2: cos( ) = r / \sqrt{ r^2 + z^2 }

So the force component in the r direction is:

Eq 3: da_r = cos() G { \large \rho } r / ( r^2 + z^2 ) ~ dz ~ = ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz

The total acceleration is the integral of this between -\infty and +\infty :

Eq 4: a_r = {\Large \int_{-\infty}^{+\infty}} ~ da_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz

I am a lazy fellow, so I will normalize z to units of r with z' = z / r or z = z' r :

Eq 5: a_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + (z' r)^2 )^{3/2} ~ r ~ dz'

This allows us to pull everything out of the integral besides z' :

Eq 6: a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^2 ( 1 + {z'}^2 ))^{3/2} ~ r ~ dz'

Eq 7: a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^3 ( 1 + {z'}^2)^{3/2} ) ~ r ~ dz'

Eq 8: a_d = G { \large \rho } ( r^2 / r^3 ) {\Large \int_{-\infty}^{+\infty}}~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz'

Eq 9: a_d = ( G { \large \rho } / r ) {\Large \int_{-\infty}^{+\infty}} ~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz'

I cheated and looked the integral up on Wolfram alpha:

{\Large \int_{-\infty}^{+\infty}} 1 / ( 1 + {z'}^2 )^{3/2} dz' = 2

so:

Eq 10: a_d = 2 G { \large \rho } / r

Units check: ( m s^{-2} ) = ( m^3 kg^{-1} s^{-2} ) ( kg m^{-1} ) ( m^{-1} ) = ( m s^{-2} ) ~ ~ ~ ... they match!

Am I supposed to put Q.E.D. here?

As to what "holds the filaments up" relative to a galaxy over gigayears, I have no clue. They are actually there (hot and charged and detectable), so nature is smarter than I am.

And I have no idea whether they are massive enough to affect galactic rotation, but they seem to be massive enough to account for a large fraction of the "dark matter" the cosmologists are looking for. Perhaps all of it, if "dark energy" is an observational error because the SN1a "standard candle" claim is untrue.

FilamentGravity (last edited 2019-03-21 05:30:39 by KeithLofstrom)