2918
Comment:
|
3338
|
Deletions are marked like this. | Additions are marked like this. |
Line 6: | Line 6: |
Assume gravitational constant $ G $, radius $ r $, line density $ \rho $, and perpendicular axis $ z $. Calculate the radial gravitational acceleration $ a $. | Assume gravitational constant $ G $, radius $ r $, line density $ { \large \rho } $, and perpendicular axis $ z $. Calculate the radial gravitational acceleration $ a $. |
Line 8: | Line 8: |
Assume a mass element $ dm = \rho dz $ at position $ z $. The distance between the particle and the mass element is $ the hypotenuse $ h = \sqrt{ r^2 + z^2 } The diagonal gravitational acceleration towards $ dm $ is | Assume a mass element $ dm = { \large \rho } dz $ at position $ z $. The distance between the particle and the mass element is $ the hypotenuse $ h = \sqrt{ r^2 + z^2 } The diagonal gravitational acceleration towards $ dm $ is |
Line 10: | Line 10: |
Eq 1: $ da_d = G \rho dz / h^2 dz ~ = ~ G \rho / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ $ in the diagonal direction | Eq 1: $ da_d = G { \large \rho } dz / h^2 dz ~ = ~ G { \large \rho } / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ $ in the diagonal direction |
Line 18: | Line 18: |
Eq 3: $ da_d = cos() G \rho r / ( r^2 + z^2 )^{3/2} dz $ | Eq 3: $ da_r = cos() G { \large \rho } r / ( r^2 + z^2 ) ~ dz ~ = ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz $ |
Line 22: | Line 22: |
Eq 4: $ a_d = \int_{-\infty}^{+\infty} da_d = \int_{-\infty}^{+\infty} G \rho r / ( r^2 + z^2 )^{3/2} dz $ | Eq 4: $ a_r = {\Large \int_{-\infty}^{+\infty}} ~ da_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz $ |
Line 26: | Line 26: |
Eq 4: $ a_d = \int_{-\infty}^{+\infty} da_d = \int_{-\infty}^{+\infty} G \rho r / ( r^2 + (z' r)^2 )^{3/2} r dz' $ | Eq 5: $ a_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + (z' r)^2 )^{3/2} ~ r ~ dz' $ |
Line 30: | Line 30: |
Eq 5: $ a_d = G \rho \int_{-\infty}^{+\infty} r / ( r^2 ( 1 + {z'}^2 ))^{3/2} r dz' $ | Eq 6: $ a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^2 ( 1 + {z'}^2 ))^{3/2} ~ r ~ dz' $ |
Line 32: | Line 32: |
Eq 6: $ a_d = G \rho \int_{-\infty}^{+\infty} r / ( r^3 ( 1 + {z'}^2)^{3/2} r dz' $ | Eq 7: $ a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^3 ( 1 + {z'}^2)^{3/2} ) ~ r ~ dz' $ |
Line 34: | Line 34: |
Eq 7: $ a_d = G \rho ( r^2 / r^3 ) \int_{-\infty}^{+\infty} 1 / ( 1 + {z'}^2)^{3/2} dz' $ | Eq 8: $ a_d = G { \large \rho } ( r^2 / r^3 ) {\Large \int_{-\infty}^{+\infty}}~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' ~ $ '''move the constant $ r $ out ''' |
Line 36: | Line 36: |
Eq 8: $ a_d = ( G \rho / r ) \int_{- \infty}^{+\infty} 1 / ( 1 + {z'}^2)^{3/2} dz' $ | Eq 9: $ a_d = ( G { \large \rho } / r ) {\Large \int_{-\infty}^{+\infty}} ~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' $ |
Line 40: | Line 40: |
$ \int_{-\infty}^{+\infty} 1 / ( 1 + {z'}^2 )^{3/2} dz' = 2 $ | $ {\Large \int_{-\infty}^{+\infty}} 1 / ( 1 + {z'}^2 )^{3/2} dz' = 2 $ so: |
Line 42: | Line 42: |
so: | || Eq 10: $ a_d = 2 G { \large \rho } / r ~ ~ ~ $ '''the acceleration from an infinite line mass is proportional to $ 1 / r $ ''' || |
Line 44: | Line 44: |
Eq 9: $ a_d = 2 G \rho / r $ Units check: $ ( m s^{-2} ) = ( m^3 kg^{-1} s{-2} ) ( kg m^{-1} ) ( m^{-1} ) = ( m s^{-2} ) ~ ~ ~ $ .. they check! |
Units check: $ ( m s^{-2} ) = ( m^3 kg^{-1} s^{-2} ) ( kg m^{-1} ) ( m^{-1} ) = ( m s^{-2} ) ~ ~ ~ $ ... they match! |
Line 50: | Line 48: |
As to what "holds the filaments up" over gigayears, I have no clue. They are hot and charged and detectable, so nature is smarter than I am. | As to what "holds the filaments up" relative to a galaxy over gigayears, I have no clue. They are actually there (hot and charged and detectable), so nature is smarter than I am. |
Gravity Field of a Filament Perpendicular to a galaxy
Integrate the gravitational acceleration from an object at radius r toward a line mass perpendicular to its orbit.
Assume gravitational constant G , radius r , line density { \large \rho } , and perpendicular axis z . Calculate the radial gravitational acceleration a .
Assume a mass element dm = { \large \rho } dz at position z . The distance between the particle and the mass element is the hypotenuse h = \sqrt{ r2 + z2 } The diagonal gravitational acceleration towards dm is
Eq 1: da_d = G { \large \rho } dz / h^2 dz ~ = ~ G { \large \rho } / ( r^2 + z^2 ) dz ~ ~ ~ ~ ~ in the diagonal direction
This is force is diagonal to the center of the particle's orbit; however, we are only concerned with the force component towards the center in the radial direction, because there is equal mass in the plus and minus z direction. Hence, we only care about the "cosine" component in the radial direction,
Eq 2: cos( ) = r / \sqrt{ r^2 + z^2 }
So the force component in the r direction is:
Eq 3: da_r = cos() G { \large \rho } r / ( r^2 + z^2 ) ~ dz ~ = ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz
The total acceleration is the integral of this between -\infty and +\infty :
Eq 4: a_r = {\Large \int_{-\infty}^{+\infty}} ~ da_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + z^2 )^{3/2} ~ dz
I am a lazy fellow, so I will normalize z to units of r with z' = z / r or z = z' r :
Eq 5: a_d = {\Large \int_{-\infty}^{+\infty}} ~ G { \large \rho } r / ( r^2 + (z' r)^2 )^{3/2} ~ r ~ dz'
This allows us to pull everything out of the integral besides z' :
Eq 6: a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^2 ( 1 + {z'}^2 ))^{3/2} ~ r ~ dz'
Eq 7: a_d = G { \large \rho } {\Large \int_{-\infty}^{+\infty}} ~ r / ( r^3 ( 1 + {z'}^2)^{3/2} ) ~ r ~ dz'
Eq 8: a_d = G { \large \rho } ( r^2 / r^3 ) {\Large \int_{-\infty}^{+\infty}}~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz' ~ move the constant r out
Eq 9: a_d = ( G { \large \rho } / r ) {\Large \int_{-\infty}^{+\infty}} ~ 1 / ( 1 + {z'}^2)^{3/2} ~ dz'
I cheated and looked the integral up on Wolfram alpha:
{\Large \int_{-\infty}^{+\infty}} 1 / ( 1 + {z'}^2 )^{3/2} dz' = 2 so:
Eq 10: a_d = 2 G { \large \rho } / r ~ ~ ~ the acceleration from an infinite line mass is proportional to 1 / r |
Units check: ( m s^{-2} ) = ( m^3 kg^{-1} s^{-2} ) ( kg m^{-1} ) ( m^{-1} ) = ( m s^{-2} ) ~ ~ ~ ... they match!
Am I supposed to put Q.E.D. here?
As to what "holds the filaments up" relative to a galaxy over gigayears, I have no clue. They are actually there (hot and charged and detectable), so nature is smarter than I am.
And I have no idea whether they are massive enough to affect galactic rotation, but they seem to be massive enough to account for a large fraction of the "dark matter" the cosmologists are looking for. Perhaps all of it, if "dark energy" is an observational error because the SN1a "standard candle" claim is untrue.