Differences between revisions 15 and 25 (spanning 10 versions)
Revision 15 as of 2021-07-16 08:01:20
Size: 1145
Comment:
Revision 25 as of 2021-07-17 06:22:25
Size: 2575
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
Climbing out of the Earth's gravity well requires energy, but a launch loop on the rotating Earth can launch to infinity with less than the classical μ/r gravitational escape energy. The difference is taken from the rotational energy of the Earth itself. Climbing out of the Earth's gravity well requires energy, but a launch loop on the rotating Earth can launch to infinity with less than the classical μ/r gravitational escape energy. The rest of the escape energy is taken from the rotational energy of the Earth itself.
Not just the initial 0.11 MJ/kg from the Earth's rotation, but also because the vehicle "pushes against" the 80 km rotor/stator track.
Line 6: Line 7:
|| $\large G $ || 6.67408e-11 || m³/kg/s² || Gravitational constant ||
|| $\large M $ || 5.972e24 || kg || Mass of Earth ||
|| $\large \mu$ || 398600.4418 || km³/s² || Standard gravitational parameter of Earth ||
|| $\large R $ || 6378 || km || Equatorial radius of Earth ||
|| $ day $ || 86400 || sec || solar day (longer than sidereal day ||
|| $\large G $ || 6.67408e-11 || m³/kg/s² || Gravitational constant ||
|| $\large M $ || 5.972e24 || kg || Mass of Earth ||
|| $\large \mu = G M $ || 398600.4418 || km³/s² || Standard gravitational parameter of Earth ||
|| $\large R $ || 6378 || km || Equatorial radius of Earth ||
|| $\large T $ || 6458 || km || Equatorial radius of launch track ||
|| $ day $ || 86400 || s || solar day (relative to sun) ||
|| $ sday $ || 86141.0905 || s || sidereal day (relative to fixed stars) ||
|| $\large\omega = 2\pi/sday$ || 7.292158e-5 || radians/s || Earth sidereal rotation rate ||
|| $\large v_e $ || 465.09 || m/s || Equatorial surface rotation velocity ||
|| $\large v_t $ || 470.09 || m/s || 80 km track rotation velocity ||

The launch loop track curves from slightly inclined (below orbital velocity) to mostly horizontal at higher speeds, to escape velocity and higher. Momentum is transmitted to the track and rotor, slightly displacing the track backwards and slowing the rotor; positions and velocities are soon restored by cable tension and surface motors, so the long term net energy change to the system is negligable.

Hence, we can approximate total launch energy:

 $ Launch_Energy ~=~ Vehicle_Drive_Energy ~+~ Motor.Losses ~+~ Atmospheric.Drag.Energy $

 $ Motor_Losses $ include resistive losses in conductors, and hysteresis losses in the magnetics. $ MoreLater

MoreLater
Line 14: Line 30:
For an  For an

E < μ/r

Climbing out of the Earth's gravity well requires energy, but a launch loop on the rotating Earth can launch to infinity with less than the classical μ/r gravitational escape energy. The rest of the escape energy is taken from the rotational energy of the Earth itself. Not just the initial 0.11 MJ/kg from the Earth's rotation, but also because the vehicle "pushes against" the 80 km rotor/stator track.

\large G

6.67408e-11

m³/kg/s²

Gravitational constant

\large M

5.972e24

kg

Mass of Earth

\large \mu = G M

398600.4418

km³/s²

Standard gravitational parameter of Earth

\large R

6378

km

Equatorial radius of Earth

\large T

6458

km

Equatorial radius of launch track

day

86400

s

solar day (relative to sun)

sday

86141.0905

s

sidereal day (relative to fixed stars)

\large\omega = 2\pi/sday

7.292158e-5

radians/s

Earth sidereal rotation rate

\large v_e

465.09

m/s

Equatorial surface rotation velocity

\large v_t

470.09

m/s

80 km track rotation velocity

The launch loop track curves from slightly inclined (below orbital velocity) to mostly horizontal at higher speeds, to escape velocity and higher. Momentum is transmitted to the track and rotor, slightly displacing the track backwards and slowing the rotor; positions and velocities are soon restored by cable tension and surface motors, so the long term net energy change to the system is negligable.

Hence, we can approximate total launch energy:

  • Launch_Energy ~=~ Vehicle_Drive_Energy ~+~ Motor.Losses ~+~ Atmospheric.Drag.Energy

    Motor_Losses include resistive losses in conductors, and hysteresis losses in the magnetics. $ MoreLater

MoreLater

and surface radius \large R . The standard gravitational parameter \large \mu for the planet is the product of the gravitational constant \large G and \large M : \large \mu ~=~ G M . The gravity at the surface of the planet is \large g(R) ~=~ \mu / R^2 , and the gravity at radius \large r above the surface is \large g(r) ~=~ \mu / r^2 .

For an

E<μ÷r (last edited 2021-07-17 07:19:46 by KeithLofstrom)