Differences between revisions 15 and 17 (spanning 2 versions)
Revision 15 as of 2021-07-16 08:01:20
Size: 1145
Comment:
Revision 17 as of 2021-07-16 08:09:26
Size: 1316
Comment:
Deletions are marked like this. Additions are marked like this.
Line 6: Line 6:
|| $\large G $ || 6.67408e-11 || m³/kg/s² || Gravitational constant ||
|| $\large M $ || 5.972e24 || kg || Mass of Earth ||
|| $\large \mu$ || 398600.4418 || km³/s² || Standard gravitational parameter of Earth ||
|| $\large R $ || 6378 || km || Equatorial radius of Earth ||
|| $ day $ || 86400 || sec || solar day (longer than sidereal day       ||
|| $\large G $              || 6.67408e-11 || m³/kg/s²  || Gravitational constant ||
|| $\large M $              || 5.972e24 || kg  || Mass of Earth ||
|| $\large \mu = G M $ || 398600.4418 || km³/s²  || Standard gravitational parameter of Earth ||
|| $\large R $              || 6378 || km  || Equatorial radius of Earth ||
|| $ day $              || 86400 || s    || solar day (longer than sidereal day) ||
|| $\large\omega = 2\pi/day$ || 7.292158e-5 || radians/s || Earth sidereal rotation rate ||
Line 14: Line 15:
For an  For an

E < μ/r

Climbing out of the Earth's gravity well requires energy, but a launch loop on the rotating Earth can launch to infinity with less than the classical μ/r gravitational escape energy. The difference is taken from the rotational energy of the Earth itself.

\large G

6.67408e-11

m³/kg/s²

Gravitational constant

\large M

5.972e24

kg

Mass of Earth

\large \mu = G M

398600.4418

km³/s²

Standard gravitational parameter of Earth

\large R

6378

km

Equatorial radius of Earth

day

86400

s

solar day (longer than sidereal day)

\large\omega = 2\pi/day

7.292158e-5

radians/s

Earth sidereal rotation rate

and surface radius \large R . The standard gravitational parameter \large \mu for the planet is the product of the gravitational constant \large G and \large M : \large \mu ~=~ G M . The gravity at the surface of the planet is \large g(R) ~=~ \mu / R^2 , and the gravity at radius \large r above the surface is \large g(r) ~=~ \mu / r^2 .

For an

E<μ÷r (last edited 2021-07-17 07:19:46 by KeithLofstrom)