Allen/Eggers Hypersonic Drag, 1957

In METRIC!


Symbols:

$ T_r

Kelvins

Recovery temperature

T_w

Kelvins

Wall temperature (relatively small, will be ignored)

T

Kelvins

Temperature at altitude

M

unitless

Mach number at altitude

H

J / m2

Heat transferred per unit area

h

J / m2 - K

Heat transfer coefficient

C_v

J / kg K

Specific heat capacity at constant volume

C_p

J / kg K

Specific heat capacity at constant pressure

C_f

?

Skin effect coefficient

\gamma

C_p / C_v

Specific heat capacity ratio, typically 1.4

\sigma

meters

nose radius

k_r

?

Thermal conductivity at the recovery temperature

Nu_r

unitless

Nusselt number

Re_{\sigma}

unitless

Reynolds number for nose cone radius \sigma

Pr

unitless

Prandtl number = 1

\mu_r

?

coefficient of viscosity at the recovery temperature

Assuming that the Prandtl number is unity.

Eq 23: T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { { \gamma-1 } \over 2 } M^2 T

Eq 25: ( T_r - T_w) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } . at altitude.

Eq 26: h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V Heat transfer coefficient (all subcripted ._l in the original) .

Page 17: (modified to ditch minus sign)

Eq 42a(?): \Large { { d H_s } \over { d t } } = { { N_{ur} k_r ( T_r - T_w ) } \over \sigma } \approx { { N_{ur} k_r T_r } \over \sigma } Heat transfer rate per unit area at the stagnation point

Page 18:

Eq 42b(?): Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } Nusselt number at recovery temperature (unitless)

"note that???" Re_{\sigma} ~ = ~ \rho ~ V ~ \sigma / \mu_r

MoreLater