Size: 2927
Comment:
|
Size: 5342
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 29: | Line 29: |
Eq 23: $ T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { { \gamma-1 } \over 2 } M^2 T $ | Allen/Eggers Eq 23: $ T_r = T \left( 1 + { \Large { { \gamma-1 } \over 2 } } M^2 \right) \approx { \Large { { \gamma-1 } \over 2 } } M^2 T $ for high mach numbers |
Line 31: | Line 31: |
Eq 25: $ ( T_r - T_w) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } $ . at altitude. | Allen/Eggers Eq 25: $ ( T_r - T_w ) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } $ . at altitude. |
Line 33: | Line 33: |
Eq 26: $ h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V $ Heat transfer coefficient (all subcripted $._l$ in the original) . | Allen/Eggers Eq 26: $ h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V $ Heat transfer coefficient (all subcripted $._l$ in the original) . |
Line 39: | Line 39: |
Eq 42a(?): $ \Large { { d H_s } \over { d t } } = { { N_{ur} k_r ( T_r - T_w ) } \over \sigma } \approx { { N_{ur} k_r T_r } \over \sigma } $ Heat transfer rate per unit area at the stagnation point | Allen/Eggers Eq 42a(?): $ \Large { { d H_s } \over { d t } } = { { Nu_r k_r ( T_r - T_w ) } \over \sigma } $ Heat transfer rate per unit area at the stagnation point |
Line 43: | Line 43: |
Eq 42b(?): $ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } $ Nusselt number at recovery temperature (unitless) | Allen/Eggers Eq 42b(?): $ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } $ Nusselt number at recovery temperature (unitless) |
Line 47: | Line 47: |
The Prandtl number is assumed to be unity, so | |
Line 48: | Line 49: |
Eq KHL1: $ ~ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} $ = 0.934 $ ~ \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r } $ | |
Line 49: | Line 51: |
Eq KHL2: $ ~ { \Large { { d H_s } \over { d t } } } = $ 0.934 $ ~ { \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r } ~ { { k_r V^2 } \over { 2 C_p \sigma } } } ~ = ~ $ 0.467 $ ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { { k_r V^2 } \over { C_p } } } $ | |
Line 50: | Line 53: |
From the definition of the Prandtl number in ''Hypersonic and High Temperature Gas Dynamics'' by Anderson (1989) Eq 16.42: $ ~ Pr ~=~ \mu C_p / k_T $ ( assumed 1 ), we can infer Eq KHL3: $ ~ k_r = k_T ~=~ \mu C_p ~=~ \mu_r C_p ~=~ $ 1.03e-6 $ ~ V ~ \sqrt{ C_p } $ Eq KHL4: $ ~ { \Large { { d H_s } \over { d t } } } ~ = ~ $ 0.467 $ ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { {\mu_r C_p V^2 } \over { C_p } } } ~ = ~ $ 0.467$ ~ { \Large \sqrt{ { \rho ~ V \mu_r } \over { \sigma } } } ~ V^2 $ The Allen/Eggers paper gives a fps expression for the coefficient of thermal velocity $ \mu_r $ without citing a source. The book ''Hypersonic and High Temperature Gas Dynamics'' by Anderson (1989) has provides this equation on page 605 in section 16.6 ''Transport Properties for High Temperature Air'': Eq And1: $ ~ \mu_0 = $ 1.462e-5 $ ~ { \large { gm \over { cm ~ s ~ K^{1/2} } } } ~ { \Large { T^{1/2} \over { 1 + 112/T } } } $ Let's assume $ \mu_0 = \mu_r $ (hm...) and simplify the demominator (making the viscosity a wee bit larger) and convert it to mks: Eq KHL5: $ ~ \mu_r = $ 1.462e-6 $ ~ { \large { kg \over { m ~ s ~ K^{1/2} } } } ~ T^{1/2} $ Now let's assume $ T \approx ~ T_r - T_w $ and use Eq 25: Eq KHL6: $ ~ \mu_r = $ 1.462e-6 $ ~ V / \sqrt{ 2 C_p } ~= $ 1.03e-6 $ ~ V / \sqrt{ C_p } $ Combining KHL4 and KHL6: Eq KHL7: $ ~ { \Large { { d H_s } \over { d t } } } ~ = ~ $ 0.467 $ ~ { \Large \sqrt{ { \rho ~ 1.03e-6 ~ { V^2 } } \over { \sqrt{ C_p } \sigma } } } ~ V^2 ~ = ~ $ 4.74e-4 $ ~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 ~ C_p^{-1/4} $ Except for the last factor of $ C_p^{-1/4} $, this resembles equation 44 in the Allen/Eggers paper: Allen/Eggers Eq 44: $ ~ { \Large { { d H_s } \over { d t } } } ~=~ $ 6.8e-6 $ ~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 $ in foot-slug-second-BTU units. So, where is the discrepancy? |
Allen/Eggers Hypersonic Drag, 1957
In METRIC!
Symbols: |
||
$ T_r |
Kelvins |
Recovery temperature |
T_w |
Kelvins |
Wall temperature (relatively small, will be ignored) |
T |
Kelvins |
Temperature at altitude |
M |
unitless |
Mach number at altitude |
H |
J / m2 |
Heat transferred per unit area |
h |
J / m2 - K |
Heat transfer coefficient |
C_v |
J / kg K |
Specific heat capacity at constant volume |
C_p |
J / kg K |
Specific heat capacity at constant pressure |
C_f |
? |
Skin effect coefficient |
\gamma |
C_p / C_v |
Specific heat capacity ratio, typically 1.4 |
\sigma |
meters |
nose radius |
k_r |
? |
Thermal conductivity at the recovery temperature |
Nu_r |
unitless |
Nusselt number |
Re_{\sigma} |
unitless |
Reynolds number for nose cone radius \sigma |
Pr |
unitless |
Prandtl number = 1 |
\mu_r |
? |
coefficient of viscosity at the recovery temperature |
note 1: in the original document, many variables have subscript ._l indicating "local" or at altitude, a complication not needed here
note 2: \gamma can be higher for diatomic or ionized gasses.
Assuming that the Prandtl number is unity.
Allen/Eggers Eq 23: T_r = T \left( 1 + { \Large { { \gamma-1 } \over 2 } } M^2 \right) \approx { \Large { { \gamma-1 } \over 2 } } M^2 T for high mach numbers
Allen/Eggers Eq 25: ( T_r - T_w ) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } . at altitude.
Allen/Eggers Eq 26: h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V Heat transfer coefficient (all subcripted ._l in the original) .
- .. much omitted ...
Page 17: (modified to ditch minus sign)
Allen/Eggers Eq 42a(?): \Large { { d H_s } \over { d t } } = { { Nu_r k_r ( T_r - T_w ) } \over \sigma } Heat transfer rate per unit area at the stagnation point
Page 18:
Allen/Eggers Eq 42b(?): Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } Nusselt number at recovery temperature (unitless)
"note that???" Re_{\sigma} ~ = ~ \rho ~ V ~ \sigma / \mu_r
The Prandtl number is assumed to be unity, so
Eq KHL1: ~ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} = 0.934 ~ \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r }
Eq KHL2: ~ { \Large { { d H_s } \over { d t } } } = 0.934 ~ { \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r } ~ { { k_r V^2 } \over { 2 C_p \sigma } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { { k_r V^2 } \over { C_p } } }
From the definition of the Prandtl number in Hypersonic and High Temperature Gas Dynamics by Anderson (1989)
Eq 16.42: ~ Pr ~=~ \mu C_p / k_T ( assumed 1 ), we can infer
Eq KHL3: ~ k_r = k_T ~=~ \mu C_p ~=~ \mu_r C_p ~=~ 1.03e-6 ~ V ~ \sqrt{ C_p }
Eq KHL4: ~ { \Large { { d H_s } \over { d t } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { {\mu_r C_p V^2 } \over { C_p } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ V \mu_r } \over { \sigma } } } ~ V^2
The Allen/Eggers paper gives a fps expression for the coefficient of thermal velocity \mu_r without citing a source. The book Hypersonic and High Temperature Gas Dynamics by Anderson (1989) has provides this equation on page 605 in section 16.6 Transport Properties for High Temperature Air:
Eq And1: ~ \mu_0 = 1.462e-5 ~ { \large { gm \over { cm ~ s ~ K^{1/2} } } } ~ { \Large { T^{1/2} \over { 1 + 112/T } } }
Let's assume \mu_0 = \mu_r (hm...) and simplify the demominator (making the viscosity a wee bit larger) and convert it to mks:
Eq KHL5: ~ \mu_r = 1.462e-6 ~ { \large { kg \over { m ~ s ~ K^{1/2} } } } ~ T^{1/2}
Now let's assume T \approx ~ T_r - T_w and use Eq 25:
Eq KHL6: ~ \mu_r = 1.462e-6 ~ V / \sqrt{ 2 C_p } ~= 1.03e-6 ~ V / \sqrt{ C_p }
Combining KHL4 and KHL6:
Eq KHL7: ~ { \Large { { d H_s } \over { d t } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ 1.03e-6 ~ { V^2 } } \over { \sqrt{ C_p } \sigma } } } ~ V^2 ~ = ~ 4.74e-4 ~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 ~ C_p^{-1/4}
Except for the last factor of C_p^{-1/4} , this resembles equation 44 in the Allen/Eggers paper:
Allen/Eggers Eq 44: ~ { \Large { { d H_s } \over { d t } } } ~=~ 6.8e-6 ~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 in foot-slug-second-BTU units.
So, where is the discrepancy?