Size: 1473
Comment:
|
Size: 2927
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 6: | Line 6: |
||<-3>'''Symbols:''' || || $ T_r || Kelvins || Recovery temperature || || $ T_w $ || Kelvins || Wall temperature || || $ T $ || Kelvins || Temperature at altitude || || $ M $ || - || Mach number at altitude || || $ H $ || J / m^2^ || Heat transferred per unit area || || $ h_l $ || J / m^2^ - K || Heat transfer coefficient || || $ C_v $ || J / kg K || [[ https://en.wikipedia.org/wiki/Heat_capacity | Specific heat capacity ]] at constant volume || || $ C_p $ || J / kg K || Specific heat capacity at constant pressure || || $ gamma $ || $ C_p / C_v $ || Specific heat capacity ratio, typically 1.4 || |
||<-3>'''Symbols:''' || || $ T_r || Kelvins || Recovery temperature || || $ T_w $ || Kelvins || Wall temperature (relatively small, will be ignored) || || $ T $ || Kelvins || Temperature at altitude || || $ M $ || unitless || Mach number at altitude || || $ H $ || J / m^2^ || Heat transferred per unit area || || $ h $ || J / m^2^ - K || Heat transfer coefficient || || $ C_v $ || J / kg K || [[ https://en.wikipedia.org/wiki/Heat_capacity | Specific heat capacity ]] at constant volume || || $ C_p $ || J / kg K || Specific heat capacity at constant pressure || || $ C_f $ || ? || Skin effect coefficient || || $\gamma $ || $ C_p / C_v $ || Specific heat capacity ratio, typically 1.4 || || $\sigma $ || meters || nose radius || || $ k_r $ || ? || Thermal conductivity at the recovery temperature || || $ Nu_r $ || unitless || Nusselt number || ||$Re_{\sigma}$|| unitless || Reynolds number for nose cone radius $ \sigma $ || || $ Pr $ || unitless || Prandtl number = 1 || || $ \mu_r $ || ? || coefficient of viscosity at the recovery temperature || |
Line 17: | Line 24: |
. note: $ gamma $ can be higher for diatomic or ionized gasses. | . note 1: in the original document, many variables have subscript $._l$ indicating "local" or at altitude, a complication not needed here . note 2: $ \gamma $ can be higher for diatomic or ionized gasses. |
Line 23: | Line 31: |
Eq 25: $ ( T_r - T_W) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } $ . at altitude | Eq 25: $ ( T_r - T_w) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } $ . at altitude. |
Line 25: | Line 33: |
Heat transfer coefficient h_l | Eq 26: $ h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V $ Heat transfer coefficient (all subcripted $._l$ in the original) . |
Line 27: | Line 35: |
. note: $ gamma $ can be higher for diatomic or ionized gasses. | ... much omitted ... |
Line 29: | Line 37: |
Page 17: (modified to ditch minus sign) | |
Line 30: | Line 39: |
Eq 42a(?): $ \Large { { d H_s } \over { d t } } = { { N_{ur} k_r ( T_r - T_w ) } \over \sigma } \approx { { N_{ur} k_r T_r } \over \sigma } $ Heat transfer rate per unit area at the stagnation point Page 18: Eq 42b(?): $ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } $ Nusselt number at recovery temperature (unitless) "note that???" $ Re_{\sigma} ~ = ~ \rho ~ V ~ \sigma / \mu_r $ |
Allen/Eggers Hypersonic Drag, 1957
In METRIC!
Symbols: |
||
$ T_r |
Kelvins |
Recovery temperature |
T_w |
Kelvins |
Wall temperature (relatively small, will be ignored) |
T |
Kelvins |
Temperature at altitude |
M |
unitless |
Mach number at altitude |
H |
J / m2 |
Heat transferred per unit area |
h |
J / m2 - K |
Heat transfer coefficient |
C_v |
J / kg K |
Specific heat capacity at constant volume |
C_p |
J / kg K |
Specific heat capacity at constant pressure |
C_f |
? |
Skin effect coefficient |
\gamma |
C_p / C_v |
Specific heat capacity ratio, typically 1.4 |
\sigma |
meters |
nose radius |
k_r |
? |
Thermal conductivity at the recovery temperature |
Nu_r |
unitless |
Nusselt number |
Re_{\sigma} |
unitless |
Reynolds number for nose cone radius \sigma |
Pr |
unitless |
Prandtl number = 1 |
\mu_r |
? |
coefficient of viscosity at the recovery temperature |
note 1: in the original document, many variables have subscript ._l indicating "local" or at altitude, a complication not needed here
note 2: \gamma can be higher for diatomic or ionized gasses.
Assuming that the Prandtl number is unity.
Eq 23: T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { { \gamma-1 } \over 2 } M^2 T
Eq 25: ( T_r - T_w) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } . at altitude.
Eq 26: h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V Heat transfer coefficient (all subcripted ._l in the original) .
- .. much omitted ...
Page 17: (modified to ditch minus sign)
Eq 42a(?): \Large { { d H_s } \over { d t } } = { { N_{ur} k_r ( T_r - T_w ) } \over \sigma } \approx { { N_{ur} k_r T_r } \over \sigma } Heat transfer rate per unit area at the stagnation point
Page 18:
Eq 42b(?): Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } Nusselt number at recovery temperature (unitless)
"note that???" Re_{\sigma} ~ = ~ \rho ~ V ~ \sigma / \mu_r