Size: 1469
Comment:
|
Size: 1471
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 21: | Line 21: |
Eq 23: $ T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { \gamma-1 } \over 2 } M^2 T $ | Eq 23: $ T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { { \gamma-1 } \over 2 } M^2 T $ |
Allen/Eggers Hypersonic Drag, 1957
In METRIC!
Symbols: |
||
$ T_r |
Kelvins |
Recovery temperature |
T_w |
Kelvins |
Wall temperature |
T |
Kelvins |
Temperature at altitude |
M |
- |
Mach number at altitude |
H |
J / m2 |
Heat transferred per unit area |
h_l |
J / m2 - K |
Heat transfer coefficient |
C_v |
J / kg K |
Specific heat capacity at constant volume |
C_p |
J / kg K |
Specific heat capacity at constant pressure |
gamma |
C_p / C_v |
Specific heat capacity ratio, typically 1.4 |
note: gamma can be higher for diatomic or ionized gasses.
Assuming that the Prandtl number is unity.
Eq 23: T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { { \gamma-1 } \over 2 } M^2 T
Eq 25: ( T_r - T_W) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T . at altitude
Heat transfer coefficient h_l
note: gamma can be higher for diatomic or ionized gasses.