Size: 365
Comment:
|
Size: 1469
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
= Allen Eggers Hypersonic Drag, 1957 = | = Allen/Eggers Hypersonic Drag, 1957 = |
Line 6: | Line 6: |
||<-3>'''Symbols:''' || || T_r || Kelvins || Recovery temperature || || T_w || Kelvins || Wall temperature || || H || J / m^2 || Heat transferred per unit area || |
||<-3>'''Symbols:''' || || $ T_r || Kelvins || Recovery temperature || || $ T_w $ || Kelvins || Wall temperature || || $ T $ || Kelvins || Temperature at altitude || || $ M $ || - || Mach number at altitude || || $ H $ || J / m^2^ || Heat transferred per unit area || || $ h_l $ || J / m^2^ - K || Heat transfer coefficient || || $ C_v $ || J / kg K || [[ https://en.wikipedia.org/wiki/Heat_capacity | Specific heat capacity ]] at constant volume || || $ C_p $ || J / kg K || Specific heat capacity at constant pressure || || $ gamma $ || $ C_p / C_v $ || Specific heat capacity ratio, typically 1.4 || . note: $ gamma $ can be higher for diatomic or ionized gasses. Assuming that the [[ https://en.wikipedia.org/wiki/Prandtl_number | Prandtl number ]] is unity. Eq 23: $ T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { \gamma-1 } \over 2 } M^2 T $ Eq 25: $ ( T_r - T_W) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T $ . at altitude Heat transfer coefficient h_l . note: $ gamma $ can be higher for diatomic or ionized gasses. |
Allen/Eggers Hypersonic Drag, 1957
In METRIC!
Symbols: |
||
$ T_r |
Kelvins |
Recovery temperature |
T_w |
Kelvins |
Wall temperature |
T |
Kelvins |
Temperature at altitude |
M |
- |
Mach number at altitude |
H |
J / m2 |
Heat transferred per unit area |
h_l |
J / m2 - K |
Heat transfer coefficient |
C_v |
J / kg K |
Specific heat capacity at constant volume |
C_p |
J / kg K |
Specific heat capacity at constant pressure |
gamma |
C_p / C_v |
Specific heat capacity ratio, typically 1.4 |
note: gamma can be higher for diatomic or ionized gasses.
Assuming that the Prandtl number is unity.
Eq 23: T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { \gamma-1 } \over 2 } M^2 T
Eq 25: ( T_r - T_W) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T . at altitude
Heat transfer coefficient h_l
note: gamma can be higher for diatomic or ionized gasses.