Differences between revisions 2 and 3
Revision 2 as of 2016-12-11 21:51:48
Size: 365
Comment:
Revision 3 as of 2016-12-12 00:03:44
Size: 1469
Comment:
Deletions are marked like this. Additions are marked like this.
Line 2: Line 2:
= Allen Eggers Hypersonic Drag, 1957 = = Allen/Eggers Hypersonic Drag, 1957 =
Line 6: Line 6:
||<-3>'''Symbols:''' ||
|| T_r || Kelvins || Recovery temperature ||
|| T_w || Kelvins || Wall temperature ||
|| H || J / m^2 || Heat transferred per unit area ||
||<-3>'''Symbols:''' ||
|| $ T_r || Kelvins || Recovery temperature ||
|| $ T_w $ || Kelvins || Wall temperature ||
|| $ T $ || Kelvins || Temperature at altitude ||
|| $ M $ || - || Mach number at altitude ||
|| $ H $ || J / m^2^ || Heat transferred per unit area ||
|| $ h_l $ || J / m^2^ - K || Heat transfer coefficient ||
|| $ C_v $ || J / kg K || [[ https://en.wikipedia.org/wiki/Heat_capacity | Specific heat capacity ]] at constant volume ||
|| $ C_p $ || J / kg K || Specific heat capacity at constant pressure ||
|| $ gamma $ || $ C_p / C_v $ || Specific heat capacity ratio, typically 1.4 ||

 . note: $ gamma $ can be higher for diatomic or ionized gasses.

Assuming that the [[ https://en.wikipedia.org/wiki/Prandtl_number | Prandtl number ]] is unity.

Eq 23: $ T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { \gamma-1 } \over 2 } M^2 T $

Eq 25: $ ( T_r - T_W) = V^2 / 2 C_p $ ... since $ V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T $ . at altitude

Heat transfer coefficient h_l

 . note: $ gamma $ can be higher for diatomic or ionized gasses.





Allen/Eggers Hypersonic Drag, 1957

In METRIC!


Symbols:

$ T_r

Kelvins

Recovery temperature

T_w

Kelvins

Wall temperature

T

Kelvins

Temperature at altitude

M

-

Mach number at altitude

H

J / m2

Heat transferred per unit area

h_l

J / m2 - K

Heat transfer coefficient

C_v

J / kg K

Specific heat capacity at constant volume

C_p

J / kg K

Specific heat capacity at constant pressure

gamma

C_p / C_v

Specific heat capacity ratio, typically 1.4

  • note: gamma can be higher for diatomic or ionized gasses.

Assuming that the Prandtl number is unity.

Eq 23: T_r = T \left( 1 + { { \gamma-1 } \over 2 } M^2 \right) \approx { \gamma-1 } \over 2 } M^2 T

Eq 25: ( T_r - T_W) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T . at altitude

Heat transfer coefficient h_l

  • note: gamma can be higher for diatomic or ionized gasses.

MoreLater

DragAllenEggers1957 (last edited 2016-12-13 04:48:32 by KeithLofstrom)