Processing Math: 1%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath
Differences between revisions 15 and 16
Revision 15 as of 2016-12-13 04:46:25
Size: 6754
Comment:
Revision 16 as of 2016-12-13 04:48:32
Size: 6760
Comment:
Deletions are marked like this. Additions are marked like this.
Line 86: Line 86:
Eq KHL8: $ ~~~~~~~~~~~ { \Large { { d H_s } \over { d t } } } ~=~ $ 8e-5 $ \left( kg^{1/2} \over m \right)~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 ~~~~~ $ W/m^2^ || Eq KHL8: $ ~~~~~~~~~~~ { \Large { { d H_s } \over { d t } } } ~=~ $ 8e-5 $ \left( kg^{1/2} \over m \right)~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 ~~~~~ $ W/m^2^ ||

Allen/Eggers Hypersonic Drag, 1957

In METRIC!


See: http://hdl.handle.net/2060/19930091020

Symbols:

Tr

Kelvins

Recovery temperature

T_w

Kelvins

Wall temperature (relatively small, will be ignored)

T

Kelvins

Temperature at altitude

M

unitless

Mach number at altitude

H

J / m2

Heat transferred per unit area

h

J / m2 - K

Heat transfer coefficient

C_v

J / kg K

Specific heat capacity at constant volume

C_p

J / kg K

Specific heat capacity at constant pressure

C_f

?

Skin effect coefficient

\gamma

C_p / C_v

Specific heat capacity ratio, typically 1.4

\sigma

meters

nose radius

k_r

?

Thermal conductivity at the recovery temperature

Nu_r

unitless

Nusselt number

Re_{\sigma}

unitless

Reynolds number for nose cone radius \sigma

Pr

unitless

Prandtl number assumed 1

\mu_r

?

coefficient of viscosity at the recovery temperature

  • note 1: in the original document, many variables have subscript ._l indicating "local" or at altitude, a complication not needed here

  • note 2: \gamma can be higher for diatomic or ionized gasses.

Assuming that the Prandtl number is unity.

Allen/Eggers Eq 23: T_r = T \left( 1 + { \Large { { \gamma-1 } \over 2 } } M^2 \right) \approx { \Large { { \gamma-1 } \over 2 } } M^2 T ~ ~ for high mach numbers

Allen/Eggers Eq 25: ( T_r - T_w ) = V^2 / 2 C_p ... since V_{sound} = \sqrt{ ( \gamma - 1 ) C_p T } ~ ~ at altitude.

Allen/Eggers Eq 26: h = { 1 \over 2 } ~ C_f ~ C_p ~ \rho ~ V Heat transfer coefficient (all subcripted ._l in the original) .

  • .. much omitted ...

Page 17: (modified to ditch minus sign)

Allen/Eggers Eq 42a(?): \Large { { d H_s } \over { d t } } = { { Nu_r k_r ( T_r - T_w ) } \over \sigma } ~ ~ Heat transfer rate per unit area at the stagnation point

Page 18:

Allen/Eggers Eq 42b(?): Nu_r = 0.934 ~ Re_{\sigma}^{0.5} ~ Pr^{ 0.4 } ~ ~ Nusselt number at recovery temperature (unitless)

"note that???" Re_{\sigma} ~ = ~ \rho ~ V \sigma / \mu_r

The Prandtl number is assumed to be unity, so

Eq KHL1: ~ Nu_r = 0.934 ~ Re_{\sigma}^{0.5} = 0.934 ~ \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r }

Eq KHL2: ~ { \Large { { d H_s } \over { d t } } } = 0.934 ~ { \Large \sqrt{ { \rho ~ V ~ \sigma } \over \mu_r } ~ { { k_r V^2 } \over { 2 C_p \sigma } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { { k_r V^2 } \over { C_p } } }

From the definition of the Prandtl number in Hypersonic and High Temperature Gas Dynamics by Anderson (1989)

Eq 16.42: ~ Pr ~=~ \mu C_p / k_T ~ ( assumed 1 ), we can infer

Eq KHL3: ~ k_r = k_T ~=~ \mu C_p ~=~ \mu_r C_p

Eq KHL4: ~ { \Large { { d H_s } \over { d t } } } = 0.467 ~ { \Large \sqrt{ { \rho ~ V } \over { \mu_r ~ \sigma } } ~ { {\mu_r C_p V^2 } \over { C_p } } } ~ = ~ 0.467 ~ { \Large \sqrt{ { \rho ~ V \mu_r } \over { \sigma } } } ~ V^2 ~ ~ This is identical to the Allen/Eggers equation 43. OK so far!

The Allen/Eggers paper gives a fps expression for the coefficient of thermal velocity \mu_r without citing a source. The book Hypersonic and High Temperature Gas Dynamics by Anderson (1989) has provides this equation on page 605 in section 16.6 Transport Properties for High Temperature Air:

Eq And1: ~ \mu_0 = \left( 1.462e-5 { gm \over { cm ~ s ~ K^{1/2} } } \right) ~ { \Large { T^{1/2} \over { 1 + 112/T } } }

Let's assume \mu_0 = \mu_r (hm...) and simplify the demominator (making the viscosity a wee bit larger) and convert it to mks:

Eq KHL5: ~ \mu_r = \left( 1.462e-6 { kg \over { m ~ s ~ K^{1/2} } } \right) ~ T^{1/2}

Now let's assume T \approx ~ T_r - T_w and use Eq 25:

Eq KHL6: ~ \mu_r = \left( 1.462e-6 { kg \over { m ~ s ~ K^{1/2} } } \right) ~ V / \sqrt{ 2 C_p } ~= \left( 1.03e-6 { kg \over { m ~ s ~ K^{1/2} } } \right) ~ V / \sqrt{ C_p }

Combining KHL4 and KHL6:

Eq KHL7: ~ { \Large { { d H_s } \over { d t } } } = 0.467 { \Large \sqrt{ { \rho ~ \left( 1.03e-6 { kg \over { m ~ s ~ K^{1/2} } } \right)~ { V^2 } } \over { \sqrt{ C_p } \sigma } } } ~ V^2 ~ = \left( 4.74e-4 { kg^{1/2} \over { m^{1/2} s^{1/2} K^{1/4} } } \right) ~ C_p^{-1/4}~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3

Except for the factor of C_p^{-1/4} , this resembles equation 44 in the Allen/Eggers paper:

Allen/Eggers Eq 44: ~ { \Large { { d H_s } \over { d t } } } ~=~ 6.8e-6 ~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 in foot-slug-second-BTU units.

So, where is the discrepancy? The units are correct for equation KHL7, both sides work out to kg \over { s^3 } . I presume the authors assumed that air has a fairly constant specific heat capacity, until it disassociates at high temperature, which was not well characterised in 1957. Here is a table up to 1500 Kelvin - heat capacity increases from 1005 J / kg K at 300K up to 1200 J / kg K. Our gas is much thinner and hotter (8000 Kelvin?) than that table is intended for. As a wild guess, assume 1300 J / kg K - if it is larger, the heating is lower.

That results in C_p^{1/4} = 6 m^{1/2} s^{-1/2} K^{-1/4} so our equation simplifies to:

Eq KHL8: ~~~~~~~~~~~ { \Large { { d H_s } \over { d t } } } ~=~ 8e-5 \left( kg^{1/2} \over m \right)~ { \Large \sqrt{ \rho \over \sigma } } ~ V^3 ~~~~~ W/m2

This is the heat flux at the stagnation point in the center of the round nose of a vehicle; the heating is less over the rest of the nose.

If \sigma = 1 m, \rho = 2.22e-8 kg/m3, and V = 11 km/s, the heat flux at the nose is 160 kW/m2.

MoreLater

DragAllenEggers1957 (last edited 2016-12-13 04:48:32 by KeithLofstrom)