Aerobraking to Jupiter/Europa and Saturn/Titan

This is only approximate, it assumes circular planet/moon orbits with zero inclination

Dist

Vcirc

Mass

Vesc

Radius

Moon

Dist

Vorb

Vmesc

Launch

Tranf.

paps

radial

DV

Land

AU

km/s

km/s

Mm

Dest.

Mm

km/s

km/s

km/s

years

km/s

gees

km/s

km/s

Earth

1.00

29.78

1.0

11.2

6.38

Luna

384

1.02

2.38

Jupiter

5.20

13.07

317.8

59.5

71.49

Europa

671

13.74

2.03

14.2

2.73

59.8

5.1

3.2

2.4

Saturn

9.55

9.69

95.2

35.5

60.27

Titan

1221

5.57

2.64

15.2

6.01

35.9

2.2

1.3

3.7

Launch Velocity

\large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } J: 8.7896 S: 10.2896 km/s

\Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } J: 14.2 S: 15.21 km/s

Transfer time ( Earth Years)

Years \large = \sqrt{ ( 1 + AU )^3 / 32 } J: 2.73 S: 5.21 years

Apogee Delta V, Delta V to moon transfer

\large \Delta v_a = v_{cp}{ \Large \left( 1 - \sqrt{ { 2 r_e } \over { r_e + r_a } } \right) } J: 5.6467 S: 5.471 km/s

\large v_{periapse.planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } J: 59.77 S: 35.90 km/s

Moon transfer distance ratio b = r_{moon} / r_{planet} J: 9.3859 S: 6.2138

Moon transfer periapse velocity \large v_{mp} = v_{m} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } J: 56.592 S: 34.611 km/s

Gee force \large = v_{periapse.planet}^2 / ( 9.8 * r_{planet} ) J: 5.1 S: 2.2 gees

Perigee deceleration DV \large = v_{periapse.planet} - v_{mp} J: 2.2 S: 1.3 km/s

Moon Landing delta V

Moon transfer apoapse velocity \large v_{ma} = v_{m} \left( 1 - \Large \sqrt{ 2 \over { 1 + b } } \right) J: 1.323 S: 2.637 km/s

Landing velocity \large = \sqrt{ \Delta {v_{ma}}^2 + {v_{me} }^2 } J: 2.423 S: 3.731 km/s