Differences between revisions 2 and 3
Revision 2 as of 2017-04-08 20:09:36
Size: 1299
Comment:
Revision 3 as of 2017-04-08 21:22:23
Size: 2050
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
|| || Dist || Vcirc || Mass || Vesc || Radius || Moon || Dist || Vorb || Launch || Tranf. || Aero || radial || Land ||
|| || AU || km/s || || km/s || Mm || Dest. || Mm || km/s || km/s || years || km/s || gees || km/s ||
|| Earth || 1.00 || 29.78 || 1.0 || 11.2 || 6.38 || Luna || 384 || 1.02 ||
|| Jupiter || 5.20 || 13.07 || 317.8 || 59.5 || 71.49 || Europa || 671 || 13.74 || 14.24 || 2.73 ||
|| Saturn || 9.55 || 9.69 || 95.2 || 35.5 || 60.27 || Titan || 1221 || 5.57 || 15.21 || 6.01 ||
This is only approximate, it assumes circular planet/moon orbits with zero inclination

|| || Dist||Vcirc||Mass ||Vesc ||Radius||Moon ||Dist||Vorb ||Vmesc|| ||Launch||Tranf.||paps||radial||DV || Land||
|| || AU ||km/s || ||km/s || Mm ||Dest. || Mm ||km/s || km/s|| || km/s|| years||km/s|| gees||km/s|| km/s||
||Earth || 1.00||29.78|| 1.0||11.2 || 6.38 ||Luna || 384|| 1.02|| 2.38|| ||
||Jupiter|| 5.20||13.07||317.8||59.5 ||71.49 ||Europa|| 671||13.74|| 2.03|| || 14.2 || 2.73|| 59.8|| 5.1|| 3.2|| 2.4 ||
||Saturn || 9.55|| 9.69|| 95.2||35.5 ||60.27 ||Titan ||1221|| 5.57|| 2.64|| || 15.2 || 6.01|| 35.9|| 2.2|| 1.3|| 3.7 ||
Line 12: Line 14:
$ \large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } ~ ~ ~ \Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } $ $ \large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } $ J: 8.7896 S: 10.2896 km/s

$
\Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } $  J: 14.2 S: 15.21 km/s
Line 16: Line 20:
Years $ \large = \sqrt{ ( 1 + AU )^3 / 32 } $ Years $ \large = \sqrt{ ( 1 + AU )^3 / 32 } $   J: 2.73 S: 5.21 years
Line 18: Line 22:
==== Apogee Delta V, Delta V to planet ==== ==== Apogee Delta V, Delta V to moon transfer ====
Line 20: Line 24:
$ \large \Delta v_a = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } $ $ \large \Delta v_a = v_{cp}{ \Large \left( 1 - \sqrt{ { 2 r_e } \over { r_e + r_a } } \right) } $ J: 5.6467 S: 5.471 km/s
Line 22: Line 26:
$ \Delta v_{planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } $ $ \large  v_{periapse.planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } $ J: 59.77 S: 35.90 km/s
Line 24: Line 28:
Moon transfer distance ratio $ b = r_{moon} / r_{planet} $ Moon transfer distance ratio $ b = r_{moon} / r_{planet} $ J: 9.3859 S: 6.2138
Line 26: Line 30:
Moon transfer perigee $ \large v_{mp} = v_{ma} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } $ Moon transfer periapse velocity $ \large v_{mp} = v_{m} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } $ J: 56.592 S: 34.611 km/s

Gee force $ \large = v_{periapse.planet}^2 / ( 9.8 * r_{planet} ) $ J: 5.1 S: 2.2 gees

Perigee deceleration DV $ \large = v_{periapse.planet} - v_{mp} $ J: 2.2 S: 1.3 km/s

==== Moon Landing delta V ====

Moon transfer apoapse velocity $ \large v_{ma} = v_{m} \left( 1 - \Large \sqrt{ 2 \over { 1 + b } } \right) $ J: 1.323 S: 2.637 km/s

Landing velocity $ \large = \sqrt{ \Delta {v_{ma}}^2 + {v_{me} }^2 } $ J: 2.423 S: 3.731 km/s

Aerobraking to Jupiter/Europa and Saturn/Titan

This is only approximate, it assumes circular planet/moon orbits with zero inclination

Dist

Vcirc

Mass

Vesc

Radius

Moon

Dist

Vorb

Vmesc

Launch

Tranf.

paps

radial

DV

Land

AU

km/s

km/s

Mm

Dest.

Mm

km/s

km/s

km/s

years

km/s

gees

km/s

km/s

Earth

1.00

29.78

1.0

11.2

6.38

Luna

384

1.02

2.38

Jupiter

5.20

13.07

317.8

59.5

71.49

Europa

671

13.74

2.03

14.2

2.73

59.8

5.1

3.2

2.4

Saturn

9.55

9.69

95.2

35.5

60.27

Titan

1221

5.57

2.64

15.2

6.01

35.9

2.2

1.3

3.7

Launch Velocity

\large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } J: 8.7896 S: 10.2896 km/s

\Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } J: 14.2 S: 15.21 km/s

Transfer time ( Earth Years)

Years \large = \sqrt{ ( 1 + AU )^3 / 32 } J: 2.73 S: 5.21 years

Apogee Delta V, Delta V to moon transfer

\large \Delta v_a = v_{cp}{ \Large \left( 1 - \sqrt{ { 2 r_e } \over { r_e + r_a } } \right) } J: 5.6467 S: 5.471 km/s

\large v_{periapse.planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } J: 59.77 S: 35.90 km/s

Moon transfer distance ratio b = r_{moon} / r_{planet} J: 9.3859 S: 6.2138

Moon transfer periapse velocity \large v_{mp} = v_{m} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } J: 56.592 S: 34.611 km/s

Gee force \large = v_{periapse.planet}^2 / ( 9.8 * r_{planet} ) J: 5.1 S: 2.2 gees

Perigee deceleration DV \large = v_{periapse.planet} - v_{mp} J: 2.2 S: 1.3 km/s

Moon Landing delta V

Moon transfer apoapse velocity \large v_{ma} = v_{m} \left( 1 - \Large \sqrt{ 2 \over { 1 + b } } \right) J: 1.323 S: 2.637 km/s

Landing velocity \large = \sqrt{ \Delta {v_{ma}}^2 + {v_{me} }^2 } J: 2.423 S: 3.731 km/s

Aerocapture (last edited 2017-04-09 19:17:24 by KeithLofstrom)