Size: 1299
Comment:
|
Size: 2050
Comment:
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
|| || Dist || Vcirc || Mass || Vesc || Radius || Moon || Dist || Vorb || Launch || Tranf. || Aero || radial || Land || || || AU || km/s || || km/s || Mm || Dest. || Mm || km/s || km/s || years || km/s || gees || km/s || || Earth || 1.00 || 29.78 || 1.0 || 11.2 || 6.38 || Luna || 384 || 1.02 || || Jupiter || 5.20 || 13.07 || 317.8 || 59.5 || 71.49 || Europa || 671 || 13.74 || 14.24 || 2.73 || || Saturn || 9.55 || 9.69 || 95.2 || 35.5 || 60.27 || Titan || 1221 || 5.57 || 15.21 || 6.01 || |
This is only approximate, it assumes circular planet/moon orbits with zero inclination || || Dist||Vcirc||Mass ||Vesc ||Radius||Moon ||Dist||Vorb ||Vmesc|| ||Launch||Tranf.||paps||radial||DV || Land|| || || AU ||km/s || ||km/s || Mm ||Dest. || Mm ||km/s || km/s|| || km/s|| years||km/s|| gees||km/s|| km/s|| ||Earth || 1.00||29.78|| 1.0||11.2 || 6.38 ||Luna || 384|| 1.02|| 2.38|| || ||Jupiter|| 5.20||13.07||317.8||59.5 ||71.49 ||Europa|| 671||13.74|| 2.03|| || 14.2 || 2.73|| 59.8|| 5.1|| 3.2|| 2.4 || ||Saturn || 9.55|| 9.69|| 95.2||35.5 ||60.27 ||Titan ||1221|| 5.57|| 2.64|| || 15.2 || 6.01|| 35.9|| 2.2|| 1.3|| 3.7 || |
Line 12: | Line 14: |
$ \large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } ~ ~ ~ \Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } $ | $ \large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } $ J: 8.7896 S: 10.2896 km/s $ \Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } $ J: 14.2 S: 15.21 km/s |
Line 16: | Line 20: |
Years $ \large = \sqrt{ ( 1 + AU )^3 / 32 } $ | Years $ \large = \sqrt{ ( 1 + AU )^3 / 32 } $ J: 2.73 S: 5.21 years |
Line 18: | Line 22: |
==== Apogee Delta V, Delta V to planet ==== | ==== Apogee Delta V, Delta V to moon transfer ==== |
Line 20: | Line 24: |
$ \large \Delta v_a = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } $ | $ \large \Delta v_a = v_{cp}{ \Large \left( 1 - \sqrt{ { 2 r_e } \over { r_e + r_a } } \right) } $ J: 5.6467 S: 5.471 km/s |
Line 22: | Line 26: |
$ \Delta v_{planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } $ | $ \large v_{periapse.planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } $ J: 59.77 S: 35.90 km/s |
Line 24: | Line 28: |
Moon transfer distance ratio $ b = r_{moon} / r_{planet} $ | Moon transfer distance ratio $ b = r_{moon} / r_{planet} $ J: 9.3859 S: 6.2138 |
Line 26: | Line 30: |
Moon transfer perigee $ \large v_{mp} = v_{ma} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } $ | Moon transfer periapse velocity $ \large v_{mp} = v_{m} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } $ J: 56.592 S: 34.611 km/s Gee force $ \large = v_{periapse.planet}^2 / ( 9.8 * r_{planet} ) $ J: 5.1 S: 2.2 gees Perigee deceleration DV $ \large = v_{periapse.planet} - v_{mp} $ J: 2.2 S: 1.3 km/s ==== Moon Landing delta V ==== Moon transfer apoapse velocity $ \large v_{ma} = v_{m} \left( 1 - \Large \sqrt{ 2 \over { 1 + b } } \right) $ J: 1.323 S: 2.637 km/s Landing velocity $ \large = \sqrt{ \Delta {v_{ma}}^2 + {v_{me} }^2 } $ J: 2.423 S: 3.731 km/s |
Aerobraking to Jupiter/Europa and Saturn/Titan
This is only approximate, it assumes circular planet/moon orbits with zero inclination
|
Dist |
Vcirc |
Mass |
Vesc |
Radius |
Moon |
Dist |
Vorb |
Vmesc |
|
Launch |
Tranf. |
paps |
radial |
DV |
Land |
|
AU |
km/s |
|
km/s |
Mm |
Dest. |
Mm |
km/s |
km/s |
|
km/s |
years |
km/s |
gees |
km/s |
km/s |
Earth |
1.00 |
29.78 |
1.0 |
11.2 |
6.38 |
Luna |
384 |
1.02 |
2.38 |
|
||||||
Jupiter |
5.20 |
13.07 |
317.8 |
59.5 |
71.49 |
Europa |
671 |
13.74 |
2.03 |
|
14.2 |
2.73 |
59.8 |
5.1 |
3.2 |
2.4 |
Saturn |
9.55 |
9.69 |
95.2 |
35.5 |
60.27 |
Titan |
1221 |
5.57 |
2.64 |
|
15.2 |
6.01 |
35.9 |
2.2 |
1.3 |
3.7 |
Launch Velocity
\large \Delta v_p = v_{ce} { \Large \left( \sqrt{ { 2 r_a } \over { r_e + r_a } } - 1 \right) } J: 8.7896 S: 10.2896 km/s
\Delta v_{launch} = \sqrt{ \Delta {v_p}^2 + {v_{esc} }^2 } J: 14.2 S: 15.21 km/s
Transfer time ( Earth Years)
Years \large = \sqrt{ ( 1 + AU )^3 / 32 } J: 2.73 S: 5.21 years
Apogee Delta V, Delta V to moon transfer
\large \Delta v_a = v_{cp}{ \Large \left( 1 - \sqrt{ { 2 r_e } \over { r_e + r_a } } \right) } J: 5.6467 S: 5.471 km/s
\large v_{periapse.planet} = \sqrt{ \Delta {v_a}^2 + {v_{esc} }^2 } J: 59.77 S: 35.90 km/s
Moon transfer distance ratio b = r_{moon} / r_{planet} J: 9.3859 S: 6.2138
Moon transfer periapse velocity \large v_{mp} = v_{m} { \Large \sqrt{ { 2 b^2 } \over { 1 + b } } } J: 56.592 S: 34.611 km/s
Gee force \large = v_{periapse.planet}^2 / ( 9.8 * r_{planet} ) J: 5.1 S: 2.2 gees
Perigee deceleration DV \large = v_{periapse.planet} - v_{mp} J: 2.2 S: 1.3 km/s
Moon Landing delta V
Moon transfer apoapse velocity \large v_{ma} = v_{m} \left( 1 - \Large \sqrt{ 2 \over { 1 + b } } \right) J: 1.323 S: 2.637 km/s
Landing velocity \large = \sqrt{ \Delta {v_{ma}}^2 + {v_{me} }^2 } J: 2.423 S: 3.731 km/s