6716
Comment:
|
← Revision 76 as of 2017-10-05 03:46:10 ⇥
9196
|
Deletions are marked like this. | Additions are marked like this. |
Line 4: | Line 4: |
The current reference space elevator design assumes solar-powered climbers. This assumes that vast areas of solar panels can cantilever from the sides of a climber - in gravity - and provide megawatts of climb power, while being lightweight and affordable. The example pictured is a DLR solar sail (passive light pressure nanothrust), intended for microgravity, NOT an array of solar cells. Solar sails are ultrathin plastic films covered with just enough shiny metal to reflect light. Aluminum conductivity is 2.8e-8 ohm/meter; a film with 10 ohm per square resistivity (95% reflective) is 2.8e-9 meters thick - a few atomic layers. The density is 2700 kg per cubic meter, works out to 8 kilograms per square kilometer on top of the plastic. This is far less than actual satellite solar panels (300 W/m^2^, 1 kg/m^2^), which are designed for microgravity, not to deploy in a gravity field. These arrays are stabilized by gravitational gradients in orbit, and they are test-deployed on the ground hanging sideways from heavy structure. | Most of this page is obsolete and needs reworking. The semi-final paper I submitted is ''' [[attachment:ise2017.pdf|here]]'''. |
Line 6: | Line 6: |
Instead, a superstrong tether can carry '''megawatts''' of subkilohertz acoustic power, which can be impedance-matched and mechanically rectified (mad handwaving here) to produce climber thrust. The acoustic transmitters on the ground and at GEO node can provide 2 MW and 10 MW of climb power respectively, more by trading off climber mass, gravitational weight, and climber speed. Climbers will have a mechanical receiver that transforms vibration to rotary wheel motion. | The current reference space elevator design assumes solar-powered climbers. This assumes that vast areas of solar panels can cantilever from the sides of a climber - in gravity - and provide megawatts of climb power, while being lightweight and affordable. |
Line 8: | Line 8: |
[[ attachment:acoustic20150820c.pdf | A preliminary paper ]] | || {{ attachment:SolarSail-DLR-ESA.jpg | | width=300 }} || This is a solar SAIL, not a solar cell! <<BR>><<BR>> [[ attachment:SolarSail-DLR-ESA.jpg | bigger ]] from [[ http://www.lunarsail.com/wp-content/uploads/2013/05/SolarSail-DLR-ESA.jpg | here ]] and [[http://www.dlr.de/fa/Portaldata/17/Resources/dokumente/institut/2002/2002_04.pdf | here ]] and [[ http://www.esa.int/esapub/bulletin/bullet98/LEIPOLD.pdf | here ]]. || |
Line 10: | Line 10: |
~+That paper is old, a new one will be written with the material here. This is morphing into two banks of electrical motors separated by a quarter wave, with electrical power conversion at each motor group, and a power cable and stiff tether in between them.+~ | . [[ AcConduc | maximum conductance of 0.15 mS per carbon nanotube, doi:10.1002/adfm.201303716 ]] . [[ AcPhoto | A discussion of photovoltaics ]] |
Line 12: | Line 13: |
----- Click image for larger view or download [[attachment:ClimberPickoff.png | {{ attachment:ClimberPickoff.png | | height=400 }} ]] [[ attachment:ClimberPickoff.odg | !LibreOffice source ]] |
.'''Solar cell self powered climbers are unlikely:''' The example pictured is a DLR solar sail (passive light pressure nanothrust), intended for microgravity, NOT an array of solar cells. Solar sails are ultrathin plastic films covered with just enough shiny metal to reflect light. Aluminum conductivity is 2.8e-8 ohm/meter; a film with 10 ohm per square resistivity (95% reflective) is 2.8e-9 meters thick - a few atomic layers. The density is 2700 kg per cubic meter, works out to 8 kilograms per square kilometer on top of the plastic. This is far less than actual satellite solar panels (300 W/m^2^, 1 kg/m^2^), which are designed for microgravity, not to deploy in a gravity field. Actual space solar arrays are stabilized by gravitational gradients in orbit, and they are test-deployed on the ground hanging sideways from heavy structure. |
Line 17: | Line 15: |
A cheesy drawing of the two motor group "wheels". The grey "foot" makes contact to the tether when it passes by at maximum velocity. Alternating wheels have feet that turn in opposite directions, and the red and blue "free wheels" help maintain spacing but do not provide power. The power wheels turn at half the power vibration rate. ----- |
Instead, a superstrong tether can carry '''megawatts''' of 1 to 10 Hz range acoustic power, which can be impedance-matched and mechanically rectified (mad handwaving here) to produce climber thrust. The acoustic transmitters on the ground and at GEO node can provide 2 MW and 10 MW of climb power respectively, more by trading off climber mass, gravitational weight, and climber speed. There will be two groups of motors for a climber, separated by 1/4 wavelength of acoustic vibration. The upper group will extract power from the vibration, launching electrical power and tension down to the lower group, which will reflect the vibrations back towards the top. The net effect will be like a quarter-wave radio antenna. -------- |
Line 26: | Line 27: |
WORK IN PROGRESS, not correct yet: ||<-2:> '''Electrical''' ||<-2:> '''Acoustic''' || ||<-4> Distance ( meters, m ) || ||<-4> Time ( seconds, s ) || ||<-4> Lumped parameters || || Energy (Joules, J) || ½·C·V² + ½·L·I² || Energy (Joules) || ½·kg·m²/s² = N·m || || Power (Watts, W) || V·A || Power (Watts) || kg·m²/s³ = N·m/s || || Current I (Amps, A) || mks fundamental unit || Displacement Velocity v || m/s || || Voltage V (Volts, V) || kg·m²/A·s³ || Force F (Newtons, N) || kg·m/s² || || Impedance R, Z ( Ohms, Ω ) || R = V/A = kg·m²/A²·s³ || Acoustic Impedance Z || kg/s || || Inductance L (Henries, H ) || L = Ω·s = kg⋅m²/A²·s² || mass m (kilograms, kg) || m || || Capacitance C (Farad, F) || C = s/Ω = s⁴⋅A²/m²·kg || compliance (1/spring) || m/N = s²/kg || ||<-4> Distributed parameters; X' ≡ linear derivative of X ≡ X per meter ; <X> ≡ average of X sin( ω T ) || || Energy/Length <J'> || ¼·C'·V²/m + ¼·L'·I² || Energy/Length <J'> || ¼·kg·m/s² = N || || Power/Length <W'> || V·A/m || Power/Length <W'> || kg·m/s³ = N/s || || Current I (Amps, A) || mks fundamental unit || Displacement Velocity v || m/s || || Voltage/Length V' || kg·m/A·s³ || Force F (Newtons, N) || kg·m/s² || || Impedance R, Z ( Ohms, Ω ) || R = V/A = kg·m²/A²·s³ || Acoustic Impedance Z || kg/s || || Inductance/Length || L' = kg⋅m²/A²·s² || mass/Length m' || kg/m || || Capacitance/Length || C' = s/Ω⋅m = s⁴⋅A²/m³·kg || compliance (1/spring) || m/N = s²/kg || |
|
Line 27: | Line 50: |
Line 33: | Line 55: |
Line 37: | Line 59: |
$~~~ L C ~ { \Large {{ \partial^2 I(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 I(x,t) } \over { \partial x^2 }} } ~~~~~ L C ~ { \Large {{ \partial^2 V(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 V(x,t) } \over { \partial x^2 }}} $ | $~~~ L C ~ { \Large {{ \partial^2 I(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 I(x,t) } \over { \partial x^2 }} } ~~~~~ L C ~ { \Large {{ \partial^2 V(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 V(x,t) } \over { \partial x^2 }}} $ |
Line 47: | Line 69: |
Sinusoidal solutions (many others are possible): $ ~~~I(x,t) = I_0 \sin( \omega t + k x )$ amps $ ~~~~~ V(x,t) = V_0 \sin( \omega t + k x )$ volts | Sinusoidal solutions (many others are possible): $ ~~~I(x,t) = I_0 \sin( \omega t + k x )$ amps $ ~~~~~ V(x,t) = V_0 \sin( \omega t + k x )$ volts |
Line 51: | Line 73: |
. speed $ ~ v ~ = ~ \omega / k ~ = ~ \pm 1 / \sqrt{ L C } ~ ~ $ in the +x or -x direction, a large fraction of the speed of light | . speed $ ~ v ~ = ~ \omega / k ~ = ~ \pm 1 / \sqrt{ L C } ~ ~ $ in the +x or -x direction, a large fraction of the speed of light |
Line 63: | Line 85: |
. $ e(x,t) $ strain of a cable element in meters at a specific distance $ x $ and time $ t $ | . $ \epsilon(x,t) $ strain of a cable element in meters at a specific distance $ x $ and time $ t $ |
Line 72: | Line 94: |
$ ~~~~~~~~ { \large e(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial x }} } $ | $ ~~~~~~~~ { \large \epsilon(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial x }} } $ |
Line 74: | Line 96: |
$ ~~~~~~~~ { \large f(x,t) = Y_c \Large { { \partial e(x,t) } \over { \partial x }} }~=~{ Y_c \Large {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} } $ | $ ~~~~~~~~ { \large f(x,t) = Y_c \Large { { \partial \epsilon(x,t) } \over { \partial x }} }~=~{ Y_c \Large {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} } $ |
Line 82: | Line 104: |
displacement: $~~{\Large{{\partial^2 \Psi(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c }~{{\partial^2 \Psi(x,t)}\over{\partial x^2 }} }~~~~$ velocity: $~~{\Large{{\partial^2 v(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 v(x,t)}\over{ \partial x^2}} }~~~~$ strain: $~~{\Large{{\partial^2 e(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 e(x,t)}\over{\partial x^2}} }$ | displacement: $~~{\Large{{\partial^2 \Psi(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c }~{{\partial^2 \Psi(x,t)}\over{\partial x^2 }} }~~~~$ velocity: $~~{\Large{{\partial^2 v(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 v(x,t)}\over{ \partial x^2}} }~~~~$ strain: $~~{\Large{{\partial^2 \epsilon(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 e(x,t)}\over{\partial x^2}} }$ |
Line 86: | Line 108: |
$ ~~~~~~~~ v(x,t) = v_0 \sin( \omega t + k x ) ~~~~~ $ and $ ~~~~~ e(x,t) = e_0 \sin( \omega t + k x ) $ | $ ~~~~~~~~ v(x,t) = v_0 \sin( \omega t + k x ) ~~~~~ $ and $ ~~~~~ \epsilon(x,t) = \epsilon_0 \sin( \omega t + k x ) $ |
Line 88: | Line 110: |
MoreLater, check the sign on $ e $ | MoreLater, check the sign on $ \epsilon $ |
Line 90: | Line 112: |
----- |
------ |
Acoustic Climber for Space Elevator
Most of this page is obsolete and needs reworking. The semi-final paper I submitted is here.
The current reference space elevator design assumes solar-powered climbers. This assumes that vast areas of solar panels can cantilever from the sides of a climber - in gravity - and provide megawatts of climb power, while being lightweight and affordable.
maximum conductance of 0.15 mS per carbon nanotube, doi:10.1002/adfm.201303716
Solar cell self powered climbers are unlikely: The example pictured is a DLR solar sail (passive light pressure nanothrust), intended for microgravity, NOT an array of solar cells. Solar sails are ultrathin plastic films covered with just enough shiny metal to reflect light. Aluminum conductivity is 2.8e-8 ohm/meter; a film with 10 ohm per square resistivity (95% reflective) is 2.8e-9 meters thick - a few atomic layers. The density is 2700 kg per cubic meter, works out to 8 kilograms per square kilometer on top of the plastic. This is far less than actual satellite solar panels (300 W/m2, 1 kg/m2), which are designed for microgravity, not to deploy in a gravity field. Actual space solar arrays are stabilized by gravitational gradients in orbit, and they are test-deployed on the ground hanging sideways from heavy structure.
Instead, a superstrong tether can carry megawatts of 1 to 10 Hz range acoustic power, which can be impedance-matched and mechanically rectified (mad handwaving here) to produce climber thrust. The acoustic transmitters on the ground and at GEO node can provide 2 MW and 10 MW of climb power respectively, more by trading off climber mass, gravitational weight, and climber speed.
There will be two groups of motors for a climber, separated by 1/4 wavelength of acoustic vibration. The upper group will extract power from the vibration, launching electrical power and tension down to the lower group, which will reflect the vibrations back towards the top. The net effect will be like a quarter-wave radio antenna.
Analogy Between an Electronic Signal Cable and a Stiff Tether
All units MKS: meters, kilograms, seconds, volts, amperes (amps), radians
( FYI: if you don't think radians are a unit, you are turned around, and can't distinguish energy from torque. )
WORK IN PROGRESS, not correct yet:
Electrical |
Acoustic |
||
Distance ( meters, m ) |
|||
Time ( seconds, s ) |
|||
Lumped parameters |
|||
Energy (Joules, J) |
½·C·V² + ½·L·I² |
Energy (Joules) |
½·kg·m²/s² = N·m |
Power (Watts, W) |
V·A |
Power (Watts) |
kg·m²/s³ = N·m/s |
Current I (Amps, A) |
mks fundamental unit |
Displacement Velocity v |
m/s |
Voltage V (Volts, V) |
kg·m²/A·s³ |
Force F (Newtons, N) |
kg·m/s² |
Impedance R, Z ( Ohms, Ω ) |
R = V/A = kg·m²/A²·s³ |
Acoustic Impedance Z |
kg/s |
Inductance L (Henries, H ) |
L = Ω·s = kg⋅m²/A²·s² |
mass m (kilograms, kg) |
m |
Capacitance C (Farad, F) |
C = s/Ω = s⁴⋅A²/m²·kg |
compliance (1/spring) |
m/N = s²/kg |
Distributed parameters; X' ≡ linear derivative of X ≡ X per meter ; <X> ≡ average of X sin( ω T ) |
|||
Energy/Length <J'> |
¼·C'·V²/m + ¼·L'·I² |
Energy/Length <J'> |
¼·kg·m/s² = N |
Power/Length <W'> |
V·A/m |
Power/Length <W'> |
kg·m/s³ = N/s |
Current I (Amps, A) |
mks fundamental unit |
Displacement Velocity v |
m/s |
Voltage/Length V' |
kg·m/A·s³ |
Force F (Newtons, N) |
kg·m/s² |
Impedance R, Z ( Ohms, Ω ) |
R = V/A = kg·m²/A²·s³ |
Acoustic Impedance Z |
kg/s |
Inductance/Length |
L' = kg⋅m²/A²·s² |
mass/Length m' |
kg/m |
Capacitance/Length |
C' = s/Ω⋅m = s⁴⋅A²/m³·kg |
compliance (1/spring) |
m/N = s²/kg |
Electrical cable
Relationship between voltage and current in a uniform lossless electronic signal cable:
~~~~~~~~ { \Large {{ \partial V(x,t) } \over { \partial x }} } = - L { \Large { {\partial I(x,t) } \over { \partial t }} } ~~~~~~~~~~~ { \Large {{ \partial I(x,t) } \over { \partial x }} } = - C { \Large {{ \partial V(x,t) } \over { \partial t }} }
Wave equations for a uniform lossless electronic signal cable:
~~~ L C ~ { \Large {{ \partial^2 I(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 I(x,t) } \over { \partial x^2 }} } ~~~~~ L C ~ { \Large {{ \partial^2 V(x,t) } \over { \partial t^2 }} } ~=~ { \Large {{ \partial^2 V(x,t) } \over { \partial x^2 }}}
I(x,t) = current in amps at a specific distance x and time t
V(x,t) = voltage in volts at a specific distance x and time t
x = distance along cable in meters
t = time in seconds
C = capacitance per unit length, farads per meter
L = inductance per unit length, henrys per meter
Sinusoidal solutions (many others are possible): ~~~I(x,t) = I_0 \sin( \omega t + k x ) amps ~~~~~ V(x,t) = V_0 \sin( \omega t + k x ) volts
frequency ~ \omega ~ ~ radians per second
wavenumber ~ k ~ = ~ \pm \sqrt{ L C } ~ \omega ~ ~ radians per meter
speed ~ v ~ = ~ \omega / k ~ = ~ \pm 1 / \sqrt{ L C } ~ ~ in the +x or -x direction, a large fraction of the speed of light
a function of the materials used, typically around 0.5c or 150 million meters per second
impedance ~ Z ~ = ~ \sqrt{ L / C } ~ = ~ V_0 / I_0 ~ ~ ohms
- a function of the materials used and cross section, typically around 50 ohms but can be higher than 100 ohms and lower than 10 ohms
Mechanical cable
\Psi(x,t) displacement from rest of a cable element in meters at a specific distance x and time t
v(x,t) displacement velocity a cable element in meters at a specific distance x and time t
a(x,t) displacement acceleration a cable element in meters at a specific distance x and time t
\epsilon(x,t) strain of a cable element in meters at a specific distance x and time t
f(x,t) force on a cable element in meters at a specific distance x and time t
x = distance along cable in meters
t = time in seconds
Y_c cable spring constant, Newtons, Young's modulus Y times cross section A
\rho_c = \rho A cable density, kilograms per meter, density \rho times cross section A
Relationship between displacement, velocity, acceleration, tension, and strain in a mechanical cable:
~~~~~~~~ { \large \epsilon(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial x }} }
~~~~~~~~ { \large f(x,t) = Y_c \Large { { \partial \epsilon(x,t) } \over { \partial x }} }~=~{ Y_c \Large {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} }
~~~~~~~~ { \large v(x,t) = \Large {{ \partial \psi(x,t) } \over { \partial t }} }
~~~~~~~~ { \large a(x,t) = \Large {{ \partial^2 \psi(x,t) } \over { \partial t^2 }} }~=~{\LARGE{ 1 \over \rho_c }}~{\large f(x,t)} ~=~ { \Large { Y_c \over \rho_c } ~ {{ \partial^2 \psi(x,t) } \over { \partial x^2 }} }
Wave equations for a uniform lossless mechanical cable:
displacement: ~~{\Large{{\partial^2 \Psi(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c }~{{\partial^2 \Psi(x,t)}\over{\partial x^2 }} }~~~~ velocity: ~~{\Large{{\partial^2 v(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 v(x,t)}\over{ \partial x^2}} }~~~~ strain: ~~{\Large{{\partial^2 \epsilon(x,t)}\over{\partial t^2}} } = {\Large{Y_c \over \rho_c}~{{\partial^2 e(x,t)}\over{\partial x^2}} }
For sinusoidal waves,
~~~~~~~~ v(x,t) = v_0 \sin( \omega t + k x ) ~~~~~ and ~~~~~ \epsilon(x,t) = \epsilon_0 \sin( \omega t + k x )
MoreLater, check the sign on \epsilon