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ORBITAL RING SYSTEMS AND JACOB'S LADDERS —

|

PAUL BIRCH

45 Brownsville Road, Heaton Moor, Stockport, England.

A method for transferring payloads into space without using rockets is presented: in this, massive rings encircle the

globe in a low orbit, supporting stationary ‘skyhooks’ from which cables hang down to any point on the Earth’s surface.
Vehicles can climb up these ‘ladders’ into orbit, or can accelerate along the rings. The concept of such Orbital Ring
Systems is examined and extended; a large family of possible configurations exists, including systems in any orientation
which precess with the Earth’s rotation, eccentric systems which can span any height range, and also Partial Orbital Ring
Systems, with end-points on the ground, along which vehicles can be launched directly.

1. BASIC CONCEPTS
|

1.1 Cables Supported by Earth’s Rotation

Various authors, including Artsutanov [1] and Isaacs et al.

[2], have considered the possibility of dangling a cable from

geosynchronous orbit down to the Earth’s surface, and using
it to hold up a ‘heavenly funicular’ or ‘space elevator.’ In

geosynchronous orbit, some 36,000 km above the equator,
freely orbiting bodies will go around the Earth in exactly
one day, and therefore stay directly above the same spot on

the equator.
As can be seen in Fig. 1 a very long cable is needed, which

must be able to support both its own weight and the weight
of the space elevator. Overall support comes from the

counterweight, which is situated higher than the geasyn-
chronous orbit and is moving faster than a freely orbiting
body there would be. The “centrifugal force” on the counter-

weight holds up the system.
This scheme has certain disadvantages; for example, since

a body can be in geosynchronous orbit only above the
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Fig. 1. The Space Elevator Concept.

* The author is now with Marconi Space & Defense Systems
Ltd., Stanmore, Middx, HA7 4LY, England.

equator it has often been said that a space elevator cable
must have its base on the equator also. In fact, this

“disadvantage” is spurious and a geostationary cable could

be let down to anywhere on the globe, apart from the polar
regions (although an equatorial site would be more conve-

nient). A more important point is that the height to geo-

synchronous crbit is equivalent to 4900 km in a uniform

one-gravity field; this is a very great height from which to

suspend a cable (indeed, a uniform cable of fine steel would

only support about 25 km of its own length without

snapping).
Even with the strongest materials that can be manufac-

tured in quantity today (not including certain ultra-strong
‘whiskers’ that can be produced only as tiny samples) this

scheme is unfortunately not yet practicable.

1.2 Cables Supported by Orbital Rings

The principles of the present design are illustrated in Fig. 2.
A massive ‘Orbital Ring’ is placed in Low Earth Orbit (LEQ);
it does not need to bear large structural stresses, because it

is in ‘free-fall’ everywhere except at the places where the

‘skyhooks’ deflect it. These ‘skyhooks’ ride upon Orbital

Rings, supported electro-magnetically, and hold station above

specific points on the Earth’s surface.

An ‘Orbital Ring System’ (ORS) has massive rings in a

low orbit and skyhooks which are geostationary. Cables are

suspended from the skyhooks down to the ground; these
form the ‘Jacob’s Ladders.’

A Jacob’s Ladder is much shorter than a cable to geo-

synchronous orbit would be, and thus does not have to be
made of su strong a material. It is within the reach of present-
day technology.

In the rest of this study (which, I must emphasise, is only
a preliminary and exploratory study of the idea of Orbital

Ring Systems) I shall demonstrate the physical principles
and develop some of the engineering details of several kinds
of ORS. In Part I I shall be concentrating on the theoretical

aspects of Orbital Ring Systems and Jacob’s Ladders. In

Parts Hand {fff {shall be concerned with aspects of engineering,
logistics and safety; I shall describe how such Orbital Ring
Systems could be built in the very near future and how they
could be used to transport large numbers of passengers and

large amounts of cargo into space; I shall describe some of
their potential uses, and the economic advantages of the

highly efficient methods of space transport they allow,
which could make conventional launch vehicles and other

rocket-propelled craft outmoded.
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Fig. 2. The Orbital Ring Concept.

2. JACOB’S LADDERS

2.1 ~ Payload of Ladders

The Jacob’s Ladders have to carry both the payload and their

own weight. The most efficient way of doing this is to use

tapering cables, which are therefore thickest where the load

is greatest.
Let the skyhook be at altitude H (I shall be using values

of 300 km and 600 km as being representative of suitable

ORS heights). Then the ladder consists of cables H in length,

strong enough to carry a payload Fp. Let Y be the tensile

strength and p the density of the cables. We need to use

materials with as great a value of ’/p as practicable, in order

to have a high ‘payload fraction,’ P, which is the ratio of Fp
to the gross weight on the skyhook. Let the radius of the

Earth be R and its surface gravity be g.

Considering a cable everywhere at its maximum working
stress we see from Fig. 3 that

Fy
= AoY ()

Now dF = apA

n (2)

where a is the acceleration due to gravity.

But dFnax
~ ¥ dA (3)

dh dh

So if F=F max everywhere,

Y¥ dA
= apA (4)

dh

Now a= g. R?/(Rth)? (5)
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Av = Ajo exppe 0 GE (8)
y  (1+H/R)

In terms of forces, or weights,

Fy, = F, exp pg . H
TNO

oe) (9)
Y  (i+H/R)

So the payload fraction FD/Fyis given by

P= exp (pe
° _Tl

(10)
Y (1+H/R)

Where H<R this may be simplified to

P =
exp -pgH

-

—~) ab
Y

which gives a conservative estimate for P since gravity de-

creases with height.
Table 1 gives the strength of various materials and values

of 1/P calculated from both the equations (10) and (11).
It is obvious that the graphite and aluminium oxide

‘whiskers’ are by far the strongest materials in the list. How-

ever, they can not yet be manufactured on a large scale;

they show what technological advances can be expected in

the future. Steel is not very suitable, thoughjust feasible in

the case of H = 300 km. Kevlar and fibreglass give much

more favourable payload fractions, and can be used with a



TABLE 1. Payload Fractions for Ladders.

Orbital Ring Systems and Jacob’s Ladders — [

10°Nmv?—10kym™? km km Eq 2.11 Eq 2.10

Material Y (Y/gp) H 1/P L/P Refs. for Y, p

Kevlar® 3.4 1.5 230 300 3.69 3.48 [4]

600 13.6 TO)

Glass fibre 3.0 2.25 136 300 9.08 8.22 [5, 6]
600 82.4 56.5

Steel 2.0 2.9 26 300 1.0x 10° 6.1.x 107
600 11x10 15x 10°

Graphite whisker 21 2.2 980 300 1.36 1.34 [7]

600 1.84 1.74

36000 - 155.*

A103 whisker 21 4.0 535 300 1.75 1.71 [7]

36000 - 1.0.x 10°*

* Corrected for centripetal acceleration due to Earth’s rotation at the equator — i.e. this is the correct figure for a cable up

to geosynchronous orbit.

® Kevlar is a registered trade-mark of DuPont Fibres.

reasonable safety margin. Glass fibre used in the cables

should have compressive surface layers and the cable should

be jacketed under compression with steel, to prevent cracks

and stress concentration (c.f. prestressed concrete and

toughened glass). Similar protection should be provided for

Kevlar ropes.

2.2 Use of Ladders

Payloads can be carried up the ladders into space by vehicles

which use some form of electric motor pushing against the

cable (Fig. 4).
A mass-driver is efficient at transferring energy into pay-

loads and is probably the best choice for the ladder’s drive

mechanism (see Ref. 3 for a description of mass-drivers),
It is apparent that the weight on the supporting skyhook

will tend to vary with the payload mass and acceleration.

However, this can be countered by a ground station at the

foot of the ladder, which exerts a variable tension on the

latter and holds FT constant (the tension is Fy when no pay-

load is attached and less when a vehicle is climbing the

ladder).

2.3 System Throughput

Using the net value of the payload, FpN< Fp, where Mp is

the net. payload mass and ‘a’ the actual acceleration(assumed
constant), we have

Fpn = My(gta) (12)

Let the time spent climbing the ladder be 7

7 = (2H/a)” —
3)

The System Throughput, S-pyy,is given by

StH =

Mp/t (14)

Substituting from (12) and (13)

payload

superconductingmagnets

| ~ driving coils

Fig. 4. A Vehicle on a Ladder.

Spy = Fpn (a/2H)/(atg) (15)

which maximises at a=g

Consider also the ‘muzzle velocity,’Vin

V2,= 2aH (16)

and the‘escape velocity,’ Ve

V2 = 2gR /(R+H) (17)

Now Vj, = Ve when

a = gR?/ (H(R+H)) (18)

Then for HXRg, we have the system throughput to escape

velocity
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StH = Fpn/(2g(R+H))” (19) TABLE 2. Wind Force on Ladders.

~
Sy

STH = 9x10™ Fpn for O0SH<600 km (20) Vv Pair Ys r Ewind

. : Conditions
For passengers we want a = 1 ms”, a gentle ride. If

oneatons

a 3

necessary, the passenger vehicle can decelerate at around ms ky m7 m N

20 ms”? near the top, to bring it to a halt at the top of the

ladder, Since a<g Maximum (1) 100 1x 10+ 0.05 7.9 x 10°

y
0.1 1.6 107

STH = Fpn (a/2H)” /g (21) 3 4.7x 108

193 a5

This is not a very good approximation since in fact the Jet stream (2) 60 2x 10 0.05 5.7% 10°
acceleration would be increased as gravity weakened with 0.1 Lx 10°
height. However, putting H=600 km into (21) gives a

3 3.4x 10

reasonable lower limit to StH Hurricane (3) 50. 1x10? 0.05 2.0.x 10"
~ 5 0.1 3.9.x 10

StH © 9x10 Fpy (22) 3 1.2% 107
The true value will not be much higher — notice that from

(15) the maximum throughput is given by Notes:

(1) This is equivalent to the maximum wind-speed in a tornado,

STH max
= Fpn / (8gH)”?= 1,5x10% Fpn; H=600 km uniform throughout the whole height of the atmosphere.

:

A
(2) This is applicable where the ladder passes through the central

= 2.0x107° Fpy, H=300 km portion of a major jet-stream. There will be a smooth and

essentially constant flow.

(23) (3) This is about the worst ‘unpredictable’ wind condition the

. .

ladder is likely to have to face.

A reasonable overall figure is therefore
(4) Reference for wind conditions is NASA TM 78118.

StH = 10% Fpn (24)

Consider the energy cost to escape velocity.
TABLE 3. Oscillations of Ladders.

Transverse Waves

Specific energy
= % v2 = gR (25)

Specific energy ~ 62MJ kg! © 17 kW hr/kg (26)
Material vi) Tatmos (2) u 71 3)

Power required to maintain throughput ~ 6000 Fpy
- kms? $ km $

(27)
Kevlar 1.5 6.6 300 400

Because the energy cost to orbit isonlyhalf as much, I 600 800

shallusearound figure of about 5 x 10° Fpy for the power Fioreglass 12 8.3 300 500
requirement. 600 1000

2.4 Effect of Weather on Ladders
Vibration of Tubular Ladders (4}

Wind can produce a sideways force at the bottom end of the 4 d 4 $ Vv 7

ladder, where it passes through the lower atmosphere.
to to PL© s (6) m1

According to Newton’s model any surface element placed in
ke

m3 al

an airstream removes the component of momentum of the
m . em ms Hz

undisturbed airflow perpendicular to the surface. :

4

If we assume uniform velocity and density over a scale 0.1 0.02 8.3 x 10 15 49

height hg we have 3 0.03 5.8 x 104 27 2.9

F=V? P air ths 1/2 (28) Notes:

V, = (Tip)? = (¥/p)*
Table 2 shows how this wind force is always less than Fp;

() r= TI” = 1p)

the ladder will be blown only a little way out of the vertical (2) Timefor waves to pass through atmosphere (nominally 10 km

even in a hurricane. high).
Equation (28) corresponds to a drag coefficient for the (3) Longest eigenperiod of standing waves (A= 2H)

cylinder (4) Tubular ladders as in Appendix 1. rg is the radius, d the

thickness of the hoops which withstand atmospheric pressure

Cp = 1 (29) on the tube. :

(5) This density is high because it includes the massof the Kevlar

support cables which ‘load’ the vibration of the hoops.

(6) V, = 0.493 (d/tg) (E/py)”Young’sModulusfor steel,

Measurements show that Cp ~ | over the rangeof

Reynolds Number, Re ~ 10? to 3x 10°, with a dip down to

Cp
~ '/3 at the onset of turbulent flow at Re ~ 5x 10°. The

=
11 x y-2

Reynolds Number is defined by
E=2x 10" Nin”.

(7) The frequency of the first eigenmode.

Re = pLV/n (30) V, = 0.157 (d/to?) (E/op)”.
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where 7 is the viscosity, p the density, V the velocity and L

a characteristic scale size. For a cylinder of 0.1 m radius ina

100 ms? wind Re = 10° at sea level, so Newton’s model
and Eq. (28) are good approximations here.

Wind can also cause oscillations in the ladder; it is

necessary to ask whether resonance effects can cause the

collapse of the iadder. Transverse waves on a stretched

string have a velocity, Vz, where

Vi = (Ti)? G1)

Table 3 gives typical values for ladder oscillations. Since

only the lowest part of the ladder can be excited directly by
the wind, modes up to 500th overtone would be excited,
with periods down to around a second. It would be hard to

build up a resonance in these conditions. Moreover, the sky-
hook and Earth connections can be made resistive and

matched to the line impedance — if necessary, by active

displacement following. Then no standing waves can be set

up and any travelling waves have to build up their amplitude
in ~ 10 km of atmosphere (~ 0.7 seconds).

In tubular ladders an additional mode (or set of eigen-
modes) of vibration exists — see Appendix 1.

Evidently, a Jacob’s ladder can be taken safely through
the atmosphere and down to sea level; wind and weather

should not harm it.

3. ORBITAL RING SYSTEMS (ORS)

3.1 Orbital Rings

For stress-free operation an orbital ring must be in free-fall,

except at the location of the skyhooks. Figure 5 shows the

minimum system, one containing two skyhooks. The ring’s
“orbit”? is composed of the innermost sections of two

eccentric orbits. These orbits are shown as being elliptical;
they could be hyperbolic. The ring “‘changes track” at the

position of the skyhooks, altering course through an angle
Aé.

Let the ring have line density m and orbital velocity Vo.
Then, taking H<R, we know that Aé is small.

Mass flow past skyhook = mVo (32)

& Velocity change at skyhook V Ad (33)

Rate of change of momentum mv2 Aé (34)

So, by NSL

Fr = mvZA0 (35)

We can calculate A@ (see Fig. 6) using the equation for a

conic, which is the form of an orbit in a square-law field.

I/r = acosp+b (36)

So, at perigee, where r= R+H-AH and ¢=O, we have

atb = 1 / (R+H-AH) (37)

Likewise, at the skyhook, where r = R+H

acosa + b = 1 / (R+H) . ©8)

Note that we have included cases where there are more

than two skyhooks; this analysis applies to each indepen-

dently.
Now from (36) we obtain the slope relative to the local

vertical,

Orbital Ring Systems and Jacob’s Ladders ~- I

Fig . 5. An Orbital Ring System with two Skyhooks.

Fig. 6. Geometry of an Orbital Ring System.

1 .dr asing

r de
=

(acos¢tb)

At the skyhook, then

tan A@ = asing

2. (acosatb)

Substituting from (37) and (38) and simplifying

tan AQ= AH + (1t+cosa)

2 (R+H-AH) sine

When Aé is small we have

Ag = 2QH = (1+cosa)

(R+H-AH) sina

There exists an approximation for small angles,

2 =~ I+cosa

a sing

which is still quite reasonable at a = 71/4

So, assuming AHR,

Ad = 4AH

a(R+H)

(39)

(40)

(41)

(42)

(43)

(44)
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There is an upper limit on A@; this is the angle 26 (Fig. 6),

since AQ = 28 when the orbit lies on the straight line SQ

(Vo > oo)

cos8 = R+H-AH

R+H (45)

p> = 2AH
(46)

(R+H)

That is

Ags 2 2AH_ %

(aan (47)

We may reinterpret this, with (44), as an upper limit of

AH and Aé as functions of the perigee angle ‘a’.

AH < Ya? (R+H) (48)

Ad Ss 2a (49)

The result (49) is also obvious by inspection of the

angles of a polyhedron, which is the limiting case of an ORS

with many skyhooks and high orbital velocity (Vy > oo),
Notice that the maximum number of skyhooks for a given
AO is 21/A@; however AO can be decreased while maintain-

ing constant Fy if Vo is increased to compensate.
We can show (see, e.g. Ref. 8) that

—
oh2

b= gk (50)

V2(R+H)?

where g is the acceleration dus to gravity at the Earth’s

surface and V, is the horizontal component of velocity at

the skyhook. Since A@ is small, V, ~ Vo.
Substituting in (37) and (38) we find

v2 = gR? (1 -H/(R+H))

Approximating(1-cosa) by a7 /2 we have

V, = gH?° (53)
R+H+AH (1-2/a”)

Using (44) and (53) we can write (35) in terms of AH

and a.

4 mgR? .AH/a
a (54)

(R+H) (R+H+AH (1-2/a7))

Table 4 gives values of FT against values of AH and a. It

will be seen that there is little difference between H=300 km

and H=600 km. Because the ring is moving faster at perigee
than at the skyhook it will need to stretch slightly; let the

required fractional extension be ‘e’. Then by Kepler’s
Second Law

1+e = AH/(R+H-AH) (55)

Since AH<R+H

e = AH/(R+H) (56)

To avoid undue strain it is better to avoid the larger
values of AH. However, there is no difficulty in arranging a

ring which is extensible by perhaps 1% without fatigue (it
need not be solid) and with a low value of Young’s Modulus.

The latter consideration avoids tension in the ring with

consequent distortion of the orbit.

Hitherto we have tacitly assumed that all skyhooks bear

the same weight, Fy. This need not be so (see Fig. 7). The

perigee swings towards the lighter of a pair of skyhooks,
but the previous analysis still holds for the respective values

of H, AH, a and Fr. If at least one ‘adjustable’ sk yhook is

used as well, a given pair of *kyhooks can have the required
Fry and location; the position and weight of the extra sky-
hook is easily calculated. Notice that the perigee heights are

all the same; the difference between the values of AH comes

from differences in the height of the skyhooks.
(51)

R+H - AH/(1-cosa)
Hp

= H-AH = (constant around ORS) (57)

Recalling that AH<R+H we obtain

v2 = R?2 3.2 Possible Orbital Planes of an ORS
° sR (52)

R+H+AH (1-1/ (1-cose)) Whereas a ladder hanging from geosynchronous orbit is best

situated above the equator, an ORS can be made at any

TABLE 4. Permissable Skyhook Weights.

H 300 600 km

AH 3 30 300 3 30 300 km

n/a Fy.10-? Vp.10°!° Fep.107 Fp10? ——Bp.10-1 Fy.107 N

2 0.54 0.54 0.54 0.49 0.49 0.49

4 1.08 1.09 1.19 0.99 0.99 1.09

2.16 2.27 4.63 1.98 2.07 4.04

16 4.40 5.64 me 4.02 5.03 -

32 9.47 114.0 :
- 8.64 68.47 :

64 27.33 - = 24.42 - -

m= 2.5 1x 10° kg m7;= 9.81ms. FrycalculatedbyEq.(54).
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Fig. 7. An Orbital Ring System with Skyhooks of unequal weight.

Fig. 8. Precession of an Orbital Ring.

attitude. A useful possibility is an ORS in a polar orbit.

Figure 8 shows what is needed; a force, F, applied at the

poles, causes the ring to precess at a rate which can be made

equal to the rotation rate of the Earth. The ring is then “‘geo-
stationary.”

Applying the law of precession (G= I Qxw we find

2F(R+H) = M(R+H)? 2 V,/(R+H) (58)

where M is the mass of the ring and Q the precession rate

(equals 27/day for Earth polar orbit). Thus

F = MQ V,/2 (59)

In Fig. 9 the ORS is shown to be composed of two. counter-

rotating rings, with a net angular momentum of zero, The

precessing forces on the two rings are thus equa! and opposite;
there is no net couple and no work is done to initiate or

maintain precession. The force between the rings may be

mediated by a skyhook structure at each pole.
It will be seen that the rings are bent through an angle at

Orbital Ring Systems and Jacob’s Ladders ~ J

Fig. 9. Precession of counter-rotating Rings.

the point of application of the precessing force. This angle,

p, is given by

bp = 182 (R+H)/Vo (60)

So bp © 10° °

(61)

Because the two rings are counter-rotating they diverge
after passing through the poles. Their paths cross at the equator
(see Fig. 9). Between equator and pole the rings reach a

maximum separation of about 360 km at latitude 23.4°.
Because the rings come together 90° away from where

the couple is applied it is obviously possible to produce the

orthogonal couple in the same way and at the same time; the

ORS can therefore be steered so as to align its axis in any
direction. This control can be used to match to planetary
rotation and to correct for perturbations; no reaction mass

is used up in moving an ORS by this method.

An ORS in which the component rings move a consider-
able distance apart can have certain advantages: both rings
can hold skyhooks which thus can “cover” a wider area.

Nevertheless there are some advantages in having a skyhook
suspended from two counter-rotating rings and in having the

two rings follow the same path.
—

In order to have the rings everywhere contiguous it is

necessary to apply the correct sideways force at each point.
Following Fig. 10 it can be shown that the precessing force

per unit length, f, is given by

f = m. 20 (16co +rsing)
~

. (62)

where the shape of an orbit (in what is now a non-central

field of force) follows

T-1 6? -1Q? sin? = -gR?/r? (63)

& 16 + 216 - 12? sinO cosO = 0 (64)

48]
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on station.

The higher and more massive an ORS the less atmos-

pheric drag will affect it; however, even a very thin (1 cm)
ring at 300 km height will have a long enough lifetime to

weather many severe solar maxima if it should lose its

source of momentum. Indeed, it would be possible to fly an

ORS at rather less than 300 km altitude, perhapsto 150 km

(where the number density goes up to 10!? m°?). It appears

that atmospheric drag and the consequent tendency to

orbital decay will not be a problem).

3.4 Electromagnetic Drag on an ORS

Skyhooks may be hung from an ORS by magnetic levitation

also, precessing forces can be mediated the same way. There

will also be a drag force caused by power-dissipating eddy

currents.

Reitz [10] quotes, for levitation above an infinite thin

sheet,

FpraG
= 2

(72)
FUIFT Hod V

where o is the conductivity (0Ajuminium = 3-94 * 10”

Q-! mz) and & is the thickness of the sheet.

We notice that the power loss due to electromagnetic

drag is

Pp = Fy: (2/ou95) (73)

The thickness 8 may be limited by the skin depth

Sskin = (2/oug%)” (74)

If we consider a skyhook with overall coil Jengch L, then

w~ Vo/L (75)

So the minimum length for which 6 is effectively the

actual thickness is given by

Lg
= 8? OttoVo/2 (76)

' the true length is less than Ls it is possible to make use

of the full thickness § by weaving the material in “Litz wire’
form rather than using a solid surface; this holds its

resistance down to the DC value.

Table 6 gives some typical values, using aluminium for

the conducting sheet. It is evident that the drag issignificant
and that a good thickness of metal is important. Choosing a

thickness of 5 cm, perhaps from a strip of aluminium

20 cm x 5 cm underneath an ORS, and using suitable values

from Tables | (1/P = 10) and 2 (Fp = 2 x 107) we find that

PE = 0.2 GW. This power loss is about ten times the loss by

atmospheric drag on a whole ring, but is still only 0.4% of

the power required to maintain full throughput for the

ladder.

We can see that for a typical ORS in polar orbit (two

counter-rotating rings with r = Im, p
= 2500 kgm") the

total precessing force is * 5 x 10!! N; if this is the ORS of

the previous paragraph the power loss will be around

500 GW. Although this amount of power is readily available
in space it is obviously worthwhile to try to reduce this

power requirement.
A high power loss also mitigates against the use of sky-

hooks for carrying passive loads; it suggests that high payload

fractions should be sought and that attention should be

given to methods of reducing Fp/FL.
It is feasible that linzar induction motors, used to counter
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Fig. 10. Precession of a Continuous Orbital Ring System.

the drag force, could be arranged to cancel most of the eddy

current, thereby reducing power dissipation.
Powell & Danby [11] have suggested a magnetic levitation

scheme in which the “roadbed” consists of coils containing
series inductance and a diode. They claim to have improved

Fp/FL by an order of magnitude.
A superconducting layer on the ORS would provide a

surface above which a skyhook could ride without any drag

force. Power dissipation would be reduced to cryogenic

losses, about 100 MW for the whole ORS; the power to the

cryostat therefore needs to be about 10 GW (rejecting to

the 300 K of the Earth’s surface), although it could be very

much more efficient if the heat can be rejected to the 3K

of deep space. Neither additional skyhooks not precessing

magnets would increase this loss.

The Earth’s magnetic field will also cause electromagnetic
drag but sincethis field is so small (B ~ 10“T)the loss is

negligible (less than 100 kW).

3.5 Structure of Skyhooks and the ORS

The skyhook will obtain its lift by using superconducting
coils to produce a persistant magnetic field; these will float

above a diamagnetic surface.

If a is the length of the lift coils, and b their width, the

lift force is

Fy
= B? ablug = Papg/tz (77)

where Zo is the height at which the coils float above the

“roadbed.”

There is obviously a limit to the magnetic field we can

use; in the case of Nb3Sn superconductor a field of 3.5 T

leaves a large safety margin in FL-Also, if the current density

is limited to a value of 2.5 x 10 Am, with an average mass

density of 4.53 x 10°kgm [3], then “he coils will be limited to

a certain maximum current at a particular effective height
from the plane. Let J be the current density. Then

(I? /zo)max ~~ 237? (78)

So there are two approximate limits on the load per unit

length

FES 1X10" for

a 1x 10'° b?
magnetic field

current density

The magnetic field limit dominates for b > 3 cm and this

condition will usually be satisfied. Note that the value of b

in the magnetic field limit is really the width of the track

and not of the coil windings; thus the magnetic field limit

can always be made to apply by using skyhook coils big



TABLE 5. Atmospheric Drag
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H login
CONDITIONS 3

km m

| 300 15.2
Solar maximum (2)

600 14.1

. 300 14.7
rt 3Average (3)

600 12.5

To(1) Tot) PA(l,4)
5 yr Ww

1.9x 10! 6.0x 103 1.1% 108
2.4x 19! 7.5x 107 9.3x 10°

6.0.x10! 1.9x 104 3.5x 107
94x10 3.0x 10° 2.3 10°

Notes:

(1) Decay limesandpowerlosses are calculated usingring parameters r = 1m,

p=2.5x10° kg m™. Hence m= 2.5 7x 10° kg ml,

(2) This is fora very severe solar maximum, with exceptionally high solar and geomagnetic
activity (F > 200, Ap > 30).

(3) This is for the ‘1976 Standard’ conditions [9].

We shall not attempt to solve these equations quantitative-
ly, but note that a circular orbit gains an equatorial bulge due

to rotation about the precession axis. This is shown, rather

exaggeratedly, in Fig. 10 where we can see that the effective

force (a fictitious resultant of gravity and centrifugal force,
in the precessing frame) is everywhere nearly perpendicular
to the ring. It will be seen from (62) that the precessing
force.is equal and opposite for the counter-rotating rings.

Because (gR?/r? > 9? r) we may simplify (62) to

f = 2mQV,_cosé (65)

It is thus apparent that an ORS can be oriented at any

attitude, from polar to equatorial orbit. Moreover, it follows

that a skyhook can be positioned above any point on Earth;

anywhere on the globe can be served by a Jacob’s Ladder.

A network of many ORSs crossing, for example, at the

poles could cover the whole planet with an array of ladders

and geosynchronous “‘satellites.”

3.3 Atmospheric Drag on an ORS

An orbital ring will experience drag from the atmosphere.
At a height

~ 300 km the mean free path is ~ 1 km; the

ORS is thus in the Knudsen regime (diameter < mean free

path).
Molecules come from a distant ‘“‘sea”’ of zero bulk velocity

to strike the ring with a relative velocity Vo, on average.
Thus each molecule imparts - M Vg to the ring, on average

TABLE 6. Electromagnetic Drag.

m Wn-! m

10° 5.6 x 10° 0.045 1.8 x 105

107! 5.6x 10° 0.45 1.810%.
10°? 5.6x 107 4.5 18

103 5.6x 10° 45 0.18

G0 = 3.54x 107 &' mw!(Aluminium)

Vo= 8x 10° ms?

(4) Uses Vy = 8x 10? ms,

(where m is the mean molecular mass).

Rate of transfer of momentum per unit
surface area =-m Vg ‘nc

4
(66)

where n is the number density, and the mean molecular

speed C is given by

Z=2 kT
”

Jn ia (67)

Using T = 300Kas a reasonable approximation from

ground level to > 1000 km height, and noting that the

dominant species from 100 km to 1000 km is atomic oxygen

(atmospheric data is taken from ‘US Standard Atmosphere’
[9]}) we find, in SI units,

Rate of transfer of momentum per unit

surface area ¥ n x 3.3 x 10°79 (68)

Let the ring have radius r and density p.

Then

Momentum per unit surface area = mrp Vo/(271)(69)

The decay constant, To, is the ratio of the momentum to

the rate of loss of momentum.

- %
Tos 2 ( 4) (70)

n 2mkT

Notice that this independent of Vo. Table 5 gives some

typical values of Tg and also of the power loss, Pa, due to

atmospheric drag

Pa = V2 nr(R+H) (2m)?? (kT) == (71)

It is evident that,to maintain an ORS in orbit indefinitely,
momentum wiill have to be supplied. To counter the drag
force it is easy to apply equal and opposite accelerating
forces to the two counter-rotating rings of an ORS; there is

no net change of angular momentum and one ring can

“push against” the other. Linear induction motors on sky-
hooks are ideal for this, as they can also be used to spin up
the ORS to higher orbital velocities and to hold the skyhooks
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TABLE 7. Properties of a Typical Skyhook.

Property Value Units

Load, FL 2x 10° N

Coil width, b 0.1 m

Coil length, a 200
,

m

Fy/a 1x 10° Nm’?!

Current, I 2.5x 105 A

Height, Zo 2.5 x 107 m

Winding cross section(2) 1x 10° m?

Coil mass 4x 10° kg

Lift to weight ratio (3) 5x 10° -

Heat leakage (4) 1x 10° W

Cryostat (4) 1x 105 WwW

Cryostat mass (5) 1x 10° kg

Notes:

(1) See Section 3.5; the magnetic field limit is set at 3.5T, while

the superconductor is a Nb3Sn_ composite with J= 25x

10° Am~ and pav = 4.53 x 10° kg m>.

(2) Cut through one side of coil; total is four times this value.

(3) —Assumes acceleration due to gravity = 10 ms”.
(4)  Acconservative estimate, assuming sink temperature = 300 K

The power requirement may be very much less.

(5) Includes cryosat power supply mass.

orbital ring - with

superconducting surface.

ve .

ue Superconducting
, te cables,

Sle
/

“Ssupporting structures

A
for ladders ,etc.

geosynchranous*s:,
sheath.

S

Fig. 11. A continuous Skyhook ORS.

enough to generate 3.5 T across the width of the “roadbed.”

An ORS consisting of 1 millimetre diameter wire would still,

by (79), be able to support 10° Nm!, but would need

levitating coils some 3 cm in diameter. Table 7 gives some

typical values.

It is apparent that the load on a skyhook could be shared

between the counter-rotating rings of the ORS. The drag force

would then be in opposite directions and tend to cancel,

making it easier to keep the skyhook on station (see Section

7. 1), though of course the drag power loss is the same.

3. 6 Continuous Skyhook ORS

Consider an ORS composed of two counter-rotating rings
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and a geosynchronous sheath (Fig. 11); the sheath has to

be supported by the inner rings and forms a continuous sky-

hook structure.

The lift forces on the “skyhook ring,” as well as precess-

ing and stabilising forces, are produced by passing current

through strips of superconducting cables around the sheath;

these induce opposing currents in the superconducting
surface of the orbital rings. The superconductors are pro-

tected against transient magnetic fields by eddy-current
shields.

For a Single ring, with a current I,

Force/unit length = (17/29)(Ho/47) (80)

The central “roadbed” is suitable for accelerating vehicles

along the ORS by linear induction motors; it would probably
be made of steel-jacketed aluminium. The geosynchronous
ring is of quite sturdy and massive construction to facilitate

its use as a continuous skyhook.
The orbital rings do not need active cryogenic equipment

to maintain their superconductors, since they are enclosed

in the “vacuum flask” of the fixed ring. Insulation is only
needed on the outside, and the cryostats are conveniently

stationary on their continuous skyhook.
Table 8 gives some typical values for this kind of ORS.

There is no need to restrict a continuous skyhook ORS

to having only two orbital rings; if the system were expand-
ed to four rings in all then it would be simple to “spin down”

a ring to geosynchronous for repairs or maintainance,
balanced by spinning up the spare ring to replace it. Having
still more rings would increase redundancy and versatility.

4. ECCENTRIC ORBITAL RING SYSTEMS (EORS)

4.1 Eccentric Orbital Rings

An orbital ring need not be deployed in a nearly circular

orbit. It is possible to use a highly eccentric orbit, such as

one reaching up to the height of a geosynchronous orbit and

down to LEO. In this case the orbital speed changes
drastically between apogee and perigee; for the ring to re-

main stress-free it must change its specific length in propor-

tio. to its speed.
Auialogues are incompressible fluid flow in pipes

(‘velocity’ inversely proportional to ‘crossectional area’) and

the ‘travelators’ found in some airports.
The change in length can be achieved by the ‘travelator’

method, or by the braiding of a ‘chinese finger.’ However,
the simplest technique uses the principle of a ‘telescopic
aerial’ — a series of overlapping sections (Fig. 12).

,

The attainable ratio of specific lengths and speeds is

simply the number of sections in a ‘unit cell.’ The telescopic
sections and main mass can be arranged in various ways for

ease of construction or guidance or the use of roadbeds. By

making the cells small compared to the length of a skyhook
the latter can be given a smooth ride; a continuous skyhook
arrangement is also feasible.

By having the sections move on simple rollers or even

frictionless magnetic fields, for example, wear and tear can

be kept very low. Because there is no weight to cause friction

between sections they will move very smoothly; power loss

will be negligible.
We can calculate the total Mass, M, of such a ring as

follows. Let the line density at apogeebe Map. The apogee

distance is rmax, the perigee distance is rmin. Let “dl bea

distance element along the ring and define

(81)€ = lmax/Tmin



Fig. 12. Sections of an Eccentric Orbital Ring System.
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TABLE 8. Properties of a Typical Continuous-Skyhook ORS.

Property Orbital Ring Geosynchronous Ring Units

Mass per unit length 7.9 x 10° 2.5x 10° kg m7?
Cryogenic heat loss (2) - 10 Wm-!

~ total - 5x 108 Ww
Power to cryostats (2) - 5x10! W

Clearance, Zo 5.0 x 10°? m

Precession Support

Force per unit length (3) 9.2.x 10° 2.5 x 10* Nm?
Current . I (3) 6.8 x 104 1.1.x 105 A

Superconductor (4) mass (3) 1.2 2.0 kg m7?!
— total per ring (3) 5.3x 107 8.8x 107 kg
— total for ORS 5.6 x 108

kg

Notes:

(1) The ORS is as shown in Fig.11 ; the orbital rings are 1m radius, with

p=2.5x 10° kg m?.

(2) A conservative estimate, assuming sink temperature = 300 K. Multi-layer vacuum

insulation is assumed.

(3) These figures pertain to a single orbital ring; the overall superconductor masses are

four times as much (double for the geosynchronous ring, double again for two
orbital rings).

(4) The superconductor is a Nb3Sn composite, with J = 2.5 x 108 A m*? and

pav = 4.53 x 10° kg m~.

. fe unit celt ——

fully open

hatf_open

fullyclosed

Then, substituting in Eq. (36) we have

Now

t= 2t min -e

(e+1) + (e-1) cosd

m«1/Vo

and, by Kepler’s Second Law

Vo ©1: dil
r rdd

main mass

(82)

"

(83)

(84)

_ 2,m= Map tr * do (85)
€ Tmin di

Integrating over the ring,

= 2, .M =

$ Map T de dl (86)
€ tmin 1

Substituting from (82) we have

M =

8Maptmine
w

d@¢ 2
37

o [(et1)+(e-1)cosd] (87)

Solving the integral we obtain

M =

mmgp Tmin (e# + e-%) (88)

Notice that when the ellipse reduces to a circle (e=1) the
right-hand side of Eq. (88) simplifies to 2amr,

4,2 EORS Skyhooks

It can be seen from Fig. 13 that a Skyhook on an EORS
does not, in general, hang perpendicularly from the ring.
That is to say, there is a component of the rate of change
of momentum along the line of the ring.

,

a

Thus the speed of the ring, as shown here, increases on

passing the skyhook. The skyhook must use its linear
induction motor to stop itself sliding down the ring; it must
also supply energy to the ring to accelerate it. However, a

counter-rotating ring will have its speed decreased in the
same way. Between the two rings of the EORS, then, the
skyhook will do no net work.

If the orbital parameters to one side of the skyhook are
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ring motion

Fig. 13. Skyhook on an Eccentric Orbital Ring System.

Ma, Va and @, we have the exact result

Fy = ma, V2 tanAd
T  —42—___ (89)

(cos 6, -sin8,° tanA@)

which, for small A@, simplifies to

Fy =m v2 A@{cos@ (90)

Inserting (@, = -A@/2) into Eq. (89) we obtain the exact

solution for the symmetrical “non-eccentric”’ case:

Fr = 2m V@sin(A@/2) (91)

Equation (35) is the small angle approximation of this.

4.3 Possible Eccentric Orbits

In Section 3 it was more or less assumed that the minimum

number of skyhooks on a ring is twc, this is necessary in

order to obtain a closed orbit. However, an eccentric orbit

need not be closed; an EORS is possible with only one sky-
hook (an ORS could also be deployed without any skyhooks
— but this would be rather pointless).

Figure 14 gives an indication of what happens when we

try to load an ORS with a single skyhook. Left to itself, the

ring would pass the skyhook position along the line AS.

When the skyhook has changed its path through an angle to

SS‘ the ring will go around its orbit and return along BS.

Now let the skyhook gradually increase its weight from zero

to the full value, but in less time than it takes the ring to

make an orbit, At this point the ring follows the path AAS'

though the skyhook. But as more of the ring completes its

orbit the path of the incoming ring (PS) swings from AS

towards BS. Thus the net force of the skyhook is directed

downwards and to the right, tending to make the skyhook

precess along the ring.
In the steady state the orbit precesses by an angle f every

revolution; substituting in Eq. (40) using (36) and (81) we

have

tan(A@/2) = —_(e-t)sin (8/2)

(e+1)+(e-1)cos(B/2) (92)
Letting t = tan(A@/2) and k = (et+1)/(e-1), and solving for

B,
.

cos(8/2) = ((1-t?(1t+k?))” t?k)/(4t?) (93)

When A@ is small we have

B = AO (3e?-2e+1)2/(e-1) (94)
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Fig. 14. Precession effect on Single-Skyhook ORS.

The same precession rate is found when Aé is negative,
that is, when the skyhook pushes up on the ring; the pre-

cession is of course in the opposite direction. Thus, in an

ORS with two counter-rotating rings, an overall precession
of the ORS can be achieved by a vertical precession force

between the two rings.
Referring back to Section 3.2 we can see that, when an

ORS is in polar orbit, precession is achieved by a sideways,
or horizontal, force; but when the ORS is in an equatorial
orbit precession is produced by a vertical force of similar

magnitude. In between, the force is applied at an inter-

mediate angle. Where only one skyhook is used the

‘equatorial precession force’ is given by

F = MQ Vo (e-1)
95

(3e?-2e+1)
9)

The corresponding forces required when more than one

skyhook is used are easily calculated.

In Fig, 15 some kinds of precessing EORS are shown. In

(a) the rings are precessing equatorially and vertical forces

between the rings are required; (b) is an EORS 1m polar orbit;
and (c) and (d) are symmetrical versions; (c) has to be

supported by ‘inverse skyhooks’ at the poles; (d) can support

weight at the poles and can be ina single “strand” as shown

or can have inner and outer ring systems separate — for

clarity the precession forces are not shown for (d).
Although an EORS can easily extend out to “geosyn-

chronous orbit” it will not be able to precess with the Earth,
because ‘‘centrifugal force” would overcome the inwards

gravitational force at apogee. The limitation could be

removed by having a skyhook at apogee to pull the ring
down again; but the skyhook weuld have to be loaded by

pushing against another ring, say, since a simple mass wouid

be in free-fall, in geosynchronous orbit.

5. PARTIAL ORBITAL RING SYSTEMS (PORS)

5.1 The Rationale for a PORS

A standard, full, Orbital Ring System has several potential
disadvantages. The first 1s that of construction; a very large

space operation with many rocket launches is needed, even

to set up a very small bootstrap system. This may be con-

sidered too expensive for an untried technology. Secondly,
an ORS, in circling the globe, will pass over many countries;

a legal battle over the use of airspace may develop.
Thus it would be useful to have a smaller and cheaper

system that could be built without using rockets; and it

would be helpful if the system could be constrained to fly
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a}

F Fig. 16. A Partial Orbital Ring System.

b)

superconducting
levitation coils

Fig. 17. Cable reversal at the ground station of a PORS.

Fig. 15, Some kinds of precessing Eccentric Orbital Ring Systems.

above the. ocean, or above friendly territory. The PORS con-

cept addresses and solves these problems.

5.2 The Concept of a PORS

A partial Orbital Ring System does not pass all around the

Earth; it has two ends (Fig. 16).
A stream of particles, or a continuous cable, ejected from

one of the ground stations with a sub-orbital velocity, will

follow a parabolic trajectory, and can be aimed to come

down again at the other ground station. On reaching the

ground the stream can be reversed and can be sent back to

the first ground station alongside its original path. Thus two

opposing mass-streams can be formed, and can consist of a

single continuous cable; there is no net flow.

The mass-streams or cable are now seen to form part of

an Orbital Ring System, with two counter-rotating rings,
and a perigee somewhere inside the Earth. They will obey
the usual ORS equations, suitably modified, and can bear

Fig. 18. Geometry of a Partial Orbital Ring System.

5.3 The Path of a PORS

The geometry of a PORS is outlined in Fig. 18; the speed of

the mass-stream at S (where it is horizontal) is Vs, and at

P & Q (the ground stations) it is Vp.
The partial orbit, as in (36), takes the form

loads in just the same manner. However, it will not be
I/r = acosp + b

:

(96)
necessary to have skyhooks or Jacob’s Ladders on this

Weh
system (though they could be used); the PORS itself comes

€ have

: . .

'
to meet the ground, becoming Bifrost, the bridge of the gods! I(H4R) = a tb

” (97)
The mass-streams themselves might conveniently be made

of a braided cable of aluminium, which could readily & b
accommodate the changes in length that will occur between

apogee and ground level; this cable can be guided and

accelerated by linear induction motors, and superconducting
coils used to reverse its direction of motion (Fig. 17).

Because the cable passes through the atmosphere it must

be surrounded by an evacuated sheath or tube which is held
_ (R +H)?v2

motionless with respect to the ground, and which can be
r=

8
supported by the moving cables. (((R+H)VQ-gR?)cosdtgR?)

gR?/(Vg (R+H)”)
oO

(98)

a = (Ve(RtH) - gR?)/Vg(RtH)?). (99)

This gives

(100)
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At P& Q then

R= (R+H)?Vg
aol)

((CRtH)V6-2R?)cosatgR)

Putting Z = H/R and C = i-cosa we obtain

C = Zf(gR/(AtZ)VE- 1) (102)

The slope to the vertical is

1
:

dr
= arsind (103)

r d¢

SoatP&Q

tanE = sina
- gR 5} (104)

(1+Z)  (14Z)V5

Now

(Ve/eR)= (14+Z)1(1+Z/0)" (105)

Therefore

tanE = Z
. (1+tcosa)

106

(1+Z) sing
( )

Now, given @ (or the arc PQ = 2aR), we may minimise

Vp. By the conservation of energy

Vp = VQ+ 2gH/(1+Z) (107)

Substituting for V from (105) we obtain

(VB/gR)= (2Z + (14Z/C)) (+z) (108)

ifferentiating this with respect to Z, and setting equal
to zero yields

Z= CCH2C-C22y)/2 (109)

This simplifies to

Z = (sina + cosa - 1)/2 (110)

when

tanE = (1 - sina)/cosa (111)

and

(Vp/gR)= Zsina/(1 + sine) (112)

If the mass-streams of the PORS are loaded with evenly
distributed geostationary mass, so that the ratio of the

moving to the total line density is uz, the orbit can be caicu-

lated from the same equations, by replacing g by the

‘effective surface gravity, geff, where

Seft
= s/u .

O13)

That is, the extra weight makes the cable seem heavier.
The force on each ground station, applied at an angle E

to the ground.

=
2

Fg = 2mpVp (114)
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Fig. 19. The Coriolis Effect ona PORS.

Fig. 20. Countering the Coriolis Effect on a PORS.

where mp is the line density of the cable at the speed Vp.
Using (1 fo)we have, for the optimum case,

Fg = 4(mp/p)2R sina/(i+sine) (415)

The total mass of the cable assembly can be obtained by

integrating the line density over the whole length. This

yields (se Eqs. (121) to (127) for more details).

a

Mu = 8m(R+H) J ((e+1)+(e-1)cos#)? dp (116)

“@

where e=1 + 2Z2/(itcosa) (117)

Using (105) and (108) to give

m,
=

mp (2Z(14Z/C) + 1)% (118)

and integrating (116) we obtain

My = 4myR(2Z(1+Z/C)+1)?
(1+cosat+2Z)

(119)

x 2(1cosatZ) “1 tan(a/2)
————— t ————

(
e/(1+H)

an

Oe
-Z sino

In the optimum case, a small angle approximation yields

Mp= 4/2 mp- aR (120)

5.4 The Effect of Earth’s Spin on a PORS

The previous section ignored Coriolis effects, but the spin of

the Earth will distort the shape of the orbits slightly, so that

the eastward track will differ from the westward (Fig. 19).
This effect must be counteracted if a continuousloop is to

be set up.
:

;

Consider a PORS set up along a line of latitude, In order

to make the eastward and westward paths the same the

horizontal components of the Coriolis force must be

countered (Fig. 20). Forces between the cables, perpendicu-
lar to the cables and equal and opposite, can maintain the

paths; this can be seen by examining two arguments:
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Fig. 21. Correcting for the Coriolis Effect on a PORS.
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Fig, 22. Steerable versions of a PORS.

i) Past any point, as much matter is moving up as is

moving down; and therefore there is no net Coriolis

force.

ii) At any point, the net centrifugal force depends only
upon the radius of curvature and the kinetic energy
of the mass-streams, and not upon how the K.E. is

divided between the streams.

In other words, if there are riders between the cables then

the Coriolis effect will induce forces between them but will

not change the overall kinetic energy; so the net centrifugal
force and gravitational force will not change, and both

streams will follow the same path as if the Earth had no spin.
A PORS set up along a line of longitude, however, is

pushed sideways by the Coriolis force; this cannot be’

countered, only allowed for (Fig. 21). The cables must be

aimed slightly eastwards; the Coriolis effect will make them

curl back around to the opposite ground station.

Orbital Ring Systems and Jacob’s Ladders — J

A PORS set up in an intermediate direction must use a

combination of both schemes; riders to counter the compon-
ent of forces along the length of the PORS, and adjust ment
of the launch direction to allow for the Sideways drift.

Note that a vehicle launched from an equatorial PORS in
an easterly direction gains about 0.5 kms"! from the Earth’s
spin (more, if H>R), so that the effective orbital velocity is
7.4kms! (corresponding to 27 MJkg”!), whereas for a

vehicle launched in the opposite direction it is 8.4 kms"!
(35 Mikg"!).

5.5 PORS Improvements
_

Perhaps the most important limitation of the PORS as

described above is that it can only launch vehicles along a

single line (in either direction). However, it is likely that a

whole range of orbits will ultimately be desired, and it
would be a nuisance to have to build a separate PORS for
each direction.

Some possible solutions to this problem are shown in

Fig. 22. In each case the PORS can be bent in the middle, so

that payloads can be sent off in different directions.
In the first a Jacob’s Ladder is used. When the PORS is

aimed to one side of the line joining the ground stations the
ladder is pulled sideways, this generates the force that puts
a bend into the path of the PORS. The disadvantage here
lies in the additional weight or downwards force produced
by the ladder; this increases the power loss considerably.

In the second an extra PORS is used. The crossover

position of the two cables can be moved about, so that pay-
loads can be launched in any direction (each of the four
arms can be swung through ~ 90°). The forces at the cross-

over point can be partly perpendicular to and partly along
the PORSs; the perpendicular components can be applied
by superconducting magnets, while the lengthwise ones will
need TTFLIMs. Apart from eddy-current losses, no power
is used in holding a PORS arm at any angle.

In the third only perpendicular forces are used; only
superconducting magnets are needed as mediators. The
PORSs meet at a point which can be moved around by alter-

ing the respective speeds of the component cables. A system
containing five ground stations can easily be steered to

launch in any direction.

A steerable PORS would a be a cheap and flexible launch

system.

6. STABILITY OF ORBITAL RING SYSTEMS

6.1 Stability of Skyhook

Consider a skyhook supported by counter-rotating rings.
Let the drag force to the left be Fpz, and to the right be

Fpp. Then in the steady state the drag forces cancel

(FpL=Fpp) and the skyhook remains stationary. Now let
the skyhook be displaced off to the right with velocity Vs
and let the orbital velocities of the rings be VL and Vr.

From Eq. (73) we have (when 6 is not limited by skin-

depth)

Fp, = (Vi+Voy"

& For © (Vp-Vsy"
(121)

Since Fp. = Fpr when Vs = 0 we have

FpL/FpR = (-Vg/Vp/UtVs/Vp) (122)

For small velocities Vg and replacing Vi.VR by Vo we

obtain
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Fig, 23. Resolution of Forces for a Displaced Skyhook.

FpL/Fpr = 1-2 Vs/Vo (123)

That is, movement to the right produces increased drag
to the right;the systemis thus unstable. If 4 is limited by
skin-depth the effect is only half as much (since Fp © V" 2)

but is in the same sense.

The onboard linear motors of the skyhook must be con-

trolled actively to hold the forces in balance with the driving

forces. Since the overall effect of electromagnetic drag and

induction is to provide a small acceleration to the ring

(countering atmospheric drag) this will be weakly stable as

long as the driving motors are working. Active control of

the centre of lift of the skyhook (and therefore the ratio

FLL/FLR) can be used to balance the drag force if the linear

induction motors should fail.

Let us examine what happens when this instability is not

suppressed. Let the sideways displacement of the skyhook
be x, the lift force be Fy, aud the mass of the ladder be M.

Let the effective inertial mass of the ladder be Mf. Define

n = Fp/FLVo (124)

Following Fig. 23 we have, resolving vertically

FL = MgtF,cosé (125)

When x<H, remembering that the payload fraction,

P= Fp/(Fp+Mg) (126)

we obtain

Fy = F)/P (127)

Resolving horizontally

Mxf = 2FLxn -

Fy sing (128)

Substitute for Fy from (127) and for M from (126)

Fp° (2m - (xP/H) - xf(1-P)/g) = (129)

Re-arranging,

%-x° en +X 7BP = 0 (130)

f(i-P) Hf(1-P)

Look for solutions of the form x = xgeit

wo? + wigni - egP = 0 (131)

f(1-P) Hf(i-P)
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Hence w=-gni + en’ + ge 2 (132)
fi-P) = f?-P)? HEC.-P)

Now since Fp<FL and gH<Vo

gn? /F?(-P)?<gP/(hf(1-P)) (133)

Thus we can simplify (132)

wo = -i(en/f(1-P) # (eP/(HE(I-P)))” (134)

We now calculate f from the centre of mass of the ladder.

Let the element of the ladder from height h to h + dh have

mass dm.

Then, from (11) P =

exp (-pgH/Y) and

dm =

mg exp (pgh/Y)
° dh (135)

Integrating, we have

M = m,(Y/gp)*(exp(@gH/Y)- 1) (136)

Substituting from Eq. (11) above

Mo
= MP. 90 (137)

(1-P) Y

Now

r= 1 ff n-amdh 38)
HM ° dh

f= _ Pep
H h exp(pgh/Y) dh (139)

CL-P)HY *,

Evaluating the integral we find

f = 1/(1-P) + 1/1nP (140)

Notice that f> %asP-> 1 and thatf> 1 asP> 0,
So, substituting for f in Ea. (134) we obtain the period of

oscillations, Ty, and the time constant of the exponential
growth of oscillations, TG.

= 2n (H/g)” (1 + (1-P)/1nP)2

& TG
= (1 /8n) G+ (1-P)/InP)

(141)

(142)

The oscillation period depends only upon the height of

the ladder (if we consider g and P to be fixed) and the

growth
time upon 7 (which is determined principallyby

Fp/F). The dependence upon payload fraction is weak.

Dethe skyhook is loaded with a simple mass (no ladder)
there are no oscillations and the time constant of displace-
ment is Tp, where x =

Xo exp (t/7p)

Tp
= 1/(en) (143)

Now for a roadbed 5 cm thick, made of Litz wire,

Fp/FL ©s~ 10%; I have based Table 9 upon this typical value

and give values for the oscillation periods and time constants.

We can see that the oscillation period is longer than the

longest eigenperiod of transverse standing waves on the

ladder, albeit not by a wide margin, so the effect of having a

flexible ladder will not alter this analysis greatly. However,
the value of the effective mass at the skyhook will be

reduced, because of the phase lag in the lower portions of



TABLE 9. Skyhook Oscillations.

Fp/ly 1.0x 104 -

n 1.3x 10% sm?!

H 300 600 km

1/P 5 10 5 10 -

f 0.629 0.677 0.629 0.677 -

Tp 7.8x 107 86x10? 1.1x10% 12x10? 5

7g 4.1x10°  5.0x108 44x10 50x10 5

Ar 15 -10 -20 15 %

Notes:

(1) Roadbed is 5 cm of aluminium (Litz wire)

(2) N=Fp/FLVo
(3) (@/27) =

1/Tp
- i/t

(4) Af is due to the speed of transverse oscillations on a

flexible ladder.

the ladder. Since the ladder is considerably more massive at

the top end than at the base the reduction in f will be quite
small (jess than 30%). The magnitude of this reduction will

depend upon details of the ladder structure and particularly
upon the behaviour of the ground station, but approximate
values are given in the table.

The time constant for growth of oscillation is long —

about a month even without any attempt to improve Fp/FL.
This gives ample time for repairs to the drive system to be

carried out. Meanwhile another skyhook could be brought
up to control the defective one and to damp out the
oscillations. It is also likely that, since Re(w) > Im), the

ground station could provide net damping by allowing some

energy-dissipating movement at the foot of the ladder (for
example, horizontal vanes dragged through a bath of oil).
This damping would be provided anyway, to absorb waves

excited by the wind or by an accelerated payload; the

overall system of skyhook and ladder would then be stable

to drag-induced oscillations.

7,2 Stability of a Continuous Skyhook ORS

Here we consider the stability of an ORS in which the orbital

rings are loaded uniformly along their length. This analysis
will also apply to systems where the skyhooks are very close

together — with the caveat that sma!!-scale phenomena and

instabilities may need to be considered separately.
Let the line density of the tube or “skyhook ring” be

mt and the line density of each of the two orbital rings be

mg. Now the orbital rings may be considered to be fluid
streams moving in opposite directions with velocity Vo.

We examine the effect of bending the tube and therefore

the fluid streams by taking a small section of the tube as in

Fig. 24, in which the radius of curvature of the element is re.
The streams are allowed to rebound elastically at the ends;
this is equivalent to letting each stream enter and leave the

element.

Let the tension at the ends (due to the rebound) be T and

let the out wardscentrifugal force be F per unit length.

Now T = 2m,v2 (144)

1and F = 2mV2/re (145)

Orbital Ring Systems and Jacob’s Ladders —1

Fig. 24. Stability of a Continuous Skyhook ORS.

The net force per unit length, acting to straighten the

tube, is

(T/t.)-F = 0 (146)

That is, the tube is dynamically neutral in the absence of
external forces. It will not try to straighten itself or to kink.
This problem is treated more fully in Ref. 3, from which
this result is taken.

However, in order to understand the stability of a contin-

uous-skyhook ORS (which may be likened to an infinitely
long mass-driver with zero acceleration) it is necessary to

consider the effect of working in a gravitational field.
Let the rings orbit at a distance r from the centre of the

gravitating body (eg/Earth) and let the acceleration due to

gravity at this level be g,. Let the total weight per unit

length be W; F has been defined above.
Obviously

W = (m+2m,) g, (147)

and, in equilibrium,

W=F (148)

Now consider a small deviation in r, so that r->r + dr.

Angular momentum and energy are conserved and the total

mass of the rings is unaltered. From this it follows that both
line density and orbital velocity decrease. We shall take it
that W and F are measured over a fixed angle; that is, over

unit length at radius r. This means that they concern a fixed
amount of matter, a fixed fraction of the rings. Likewise,
mt and mg are the line densities at radius r.

dW/dr = (m, + 2m,) dg,/dr (149)

From (145) we have

dF/dr = 2m,((2Vg/1) dVg/dr - V2/r7) (150)

By conservation of angular momentum the horizontal
velocities obey

dVQ/dr = -Vo/r
:

—. (151)

dF /dr= 2m(-3V2/r?) _ (152)

But, from (148)

QmsVG/r= (mz + 2m,) er (153)

dF/dr = -3(m; + 2mg)g,/r (154)
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Let the net force outwards per unit length be P=F-W.

Then

aP/dr = - (my + 2mg) g,/T (155)

We can see that P acts to oppose the change in radius,

since dP « - dr. The combined orbit of the ORS is therefore
stable.

By NSL, for a finite displacement Z,

P = (m, + 2ms)Z (156)

Using (155) and putting P= 0 at Z = 0 we obtain

Z =-(g,/r)Z (157)

which has solutions of the form Z = Z,eit where

w = (g,/r)” (158)

Thus the ORS will undergo radial oscillations about an

equilibrium radius if it is perturbed.
#1 the case of a localised perturbation a shock wave will

run out in both directions at velocity Vo, diminishing as it

spreads out the energy of the perturbation. Behind the front

radial oscillations will occur. Since the period of an orbit of

the shock wave is shorter than an oscillation period (by a

factor (1 + mt/2mg)”)there will be a beating effect between

them. The effect is like that of striking a suspended metal

ring to make it chime.

A simpler oscillation will take place if the whole ORS is

pushed inwards and released, in a uniform fashion. The ORS

will stay circular, its radius oscillating about its equilibrium
value.

Oscillations, once excited by the movements of payloads
and so forth, can be damped by various methods. Passive

damping at the foot of the ladders has already been mention-
ed in Section 6.1; it is particularly wcll-suited to damping

up-and-down motions of this kind. Active control of sky-
hook weights and positions and of the “flight” of the

orbital rings could localise a perturbation and damp it out

very near to its source. Mechanical losses in the ring materials

would cause oscillations to decay slowly, but these are both

unnecessary and undesirable (they would tend to cause

fatigue). Of these three, the method of passive dissipation
is simplest and most fooi-proof.

To sum up, the combination of neutral stability for

fluid streams inside a tube and the stability of the ORS

“orbit” prove that the continuous-skyhook ORS isa

dynamically stable structure.

6. 3 St: bility of a Discrete Skyhook ORS

Because a discrete-skyhook system tends towards a contin-

uous-skyhook ORS in the limit of many skyhooks we

already know (from the previous section) that the large scale

structure is stable. However, we need to consider whether

any instabilities arise on the scale of individual skyhooks.
Consider Fig. 25 in which skyhook A introduces a

perturbation in the direction of an orbital ring. Let the

small increase in A@ at A be 56, and the corresponding in-

crease in & be 5a as shown; let the increase in height of the

ring at B be Sh. Let the radial distance of the skyhooks
(R+H) be designated by r. For clarity | have used a mapping
in which lines of constant radial distance are straight lines

across the diagram.
; ,

Re-arranging Eq. (52) we have

AH = (1-gR?/rVQ)1° (1 - cose)/cosa (159)

AO?

B 2r ba

-y ws

Cn
—>2rSale we

Fig. 25. Geometry of Perturbations of Discrete Skyhook ORS.

Substituting for AH in (42), with AH<r, we obtain

AQ = 2tana- (1 -gR?/rV3) (160)

Differentiating with respect to @

dA@d = 2sec*a. 1- gR =

> (161)
do: Vi sinacosa

Here, where the change in A@ is only on one side of the

skyhook, we have

5a = sin2da - 660,/A@ (162)

By simple trigonometry, to first order in small quantities

dh = 2r5a° tan(A@/2)=r- 5a - Ad (163)

Sh=rsin2a-d6, (164)

The increase in A@ at A causes a decrease in the height
of perigee. Let this decrease be SAHA.Differentiating (159)
we obtain

dAH,/oa = AH- cosa/(1-cosa) ° (sina/cos’a) (165)

. BAH,/AH = 5a- tana/(1-cose) (166)

Let the angle of incidence of the ring near B be

(4A9+50 p) and let the corresponding angles at P.Q and R be

(‘4A0+80 pp) etc. Let the height above the level of B (i.e.

above height H or overall distance r) be y. Then, along PR

tan(2A@+50p) = (AHt5AH aty) (ltcos(atSa(1-2y/5h)))
(r-AH) sin(atSa(1-2y/5h))

(167)



Expanding to first order in sma!l quantities and simplify-
ing

563 = ¥sinA@ -

(6AH,/AH + y/AH + 6a(2y/5h-1)/sine)

(168)
Now from (42) and (163)

y/AH = - 6a(2y/6H)(1+cosa)/sing (169)

Substituting Eqs. (166) and (169) into (168) yields

d6p = sind@ -Sa tana - (2y/&h) (1+cose) + (2y/éh-1)

2 1-cosa sina sing

(170)

We now use the small-angle approximation for sinA@ and

substitute for 6a using Eq. (162) to obtain

80p = 60,(1 -(2y/5h) cos”a) (171)

By substituting for y we observethat (171) gives
50 BR

= 564, correctly, and also that

d0pp = 50,4 (1- 2cos? a) (172)

& 58RQ
= 6, (1 - cos?a) (173)

Likewise, along BQ we have, for the unperturbed ring,

809 = - 56, (2y/5h) cos*a (174)

The details of the effects of the perturbation will depend

upon the construction and response of skyhook B, as well as

the nature of the load on the skyhook. However, some

aspects of thé behaviour of the system may be noted.

Let the upward force on a skyhook t: F. Let the height
of the skyhook increase by the small amount y, and one or

other of the incident and exit angles increase by the small

amount 5A@. Let the corresponding increase in F be dF.

Then, to first and second order in the small angle A0

(F+8F) = (m+5m) (Vot5V_)
7

(Ad+65A0) (175)

Expanding this to first order in the small quantities ‘6’

we find

5E/F = d5m/m+ 26V,4/V_+ 5A0/A0 (176)

Because the line density is inversely proportional to the

orbital velocity

bm/m = -6Vo/Vo (177)

Now, by conservation of energy

8(V2) = -(2gR7/17) y (178)

Substituting from (160) and (164) and simplifying yields

8Vo/Vo = -y/t
*

(1-A9/2tana)= 56 a(y/5h) sin2a(1-A6/2tana)

(179)

 8F/F= 5A0/A0 + 60 a(y/8h) cos*a(2tane-A8) (180)

It will be seen that, because A@ is small, most of the

change in F is due to the first term, with the second term a

small correction significant only on scales of orbital angle

Orbital Ring Systems and Jacob’s Ladders — 1

~1/Aé6.
Consider the forces applied at Q when the perturbed ring :

is diverted on to its original path, as the initial reaction of t
the skyhook to the perturbation. Taking only the first term

‘

of (180) we obtain, using (173) and (174)

5F/F = (80 4/A6)(1 - 2cos?a) (181)

Note that 6F/F is negative in sense, provided that a< 45°.
The sideways force, 5G, is given by

5G/F = (5A,/M8) sin (A0/2) (182)

The net force is downwards and towards P; the skyhook
will tend to move that way, causing the angle 59, to

increase towards zero. The skyhook can also slip down the

outgoing ring system along the line BQ', bringing it into

positionat Q’.
Q' is the new equilibriumposition: both 66 and 580 f

are zero. This position is a stable one; movement towards

P decreases 605 while forcing 5@9 to increase so that the

net force is back towards Q'. Movement towards Q also :

produces a restoring force. This follows from Eqs. (181) and i
(182). ;

At Q', Eq. (171) yields

Wa

MRR
Spence

tee

yQ'
= 5h/2cos?a = -1504

* tana (183) aE

When the skyhook is at the new equilibrium point, Q', a

the perturbation applied at A has the same magnitude there oe
and at all further skyhooks downstream.

There are two caveats to be added to this statement. The

first is that velocity and weight changes have been ignored; they
are considered later. The second caveat is that Q' is displayed
relative to the equivalent position Qo on the original path;
let this horizontal displacement be 2réa’.

rda' = 15a (2yQ'/6h - 1) (184)

Sa'/Sa = tan2a (185)

Thus each successive skyhook will be moved an extra

2rSa' towards skyhook A. This is another example of the

phenomenon of precession which was considered in Section

4.3: this precession can be prevented by allowing a small

increase in the downward force on each skyhook. Otherwise

the precession effect will progress around the ORS until the

ring returns to skyhook A. Let the total precession in one

turn be 5a't

da (27/a) tan?aba'y = (186)

Substitute for 6a and A@ from (162) and (160), giving

Sa'y = 60,4 *(2n/a) sin?a/(1-gR?/rVZ) (187)

The precession will be stopped at skyhook A by the

extra downwards force at this point (this is what produced
the perturbation in the first place).

An extreme of skyhook behaviour is found when the

effective height remains unaltered. In this case the

“reflection” takes place at R and 509 = -50 4. Figure 26

shows how the outgoing ring will reach the next skyhook
“on target.” In this mode the pattern will repeat'every other

skyhook; it will not grow. At each skyhook there will be a

sideways force tending to move it towards the local
equilibriumpoint (which is Q’ for skyhook B).

In moving the skyhook down to Q" from its originai

height, work is done by the skyhook on the ring; this acts to

maintain large-scale orbital stability. For consideration of

the short term effects on the skyhooks we may take an
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Fig. 26. Reflection of Perturbation at Constant Height.

7

emiapath

Fig. 27. Focusing requirement for Skyhooks.

infinitely long ring, with new sections of it continually pass-

ing through the skyhooks. This approximates the situation

over times less than an orbital period and enabled us

previously to neglect the work done on the rings, which is

in fact given by

2ramd(2V2)= -MpVGAd- Sh/2cos”a (188)

8VoIVo
= Ad 564° tana/ 2a (189)

This effect is small (A@ is small) and can be added to the

velocity change of (179), giving

SVo/Vo
= 80 a(tana+(tana/a- 1) A9/2) (190)

The decrease in height at the skyhook will also cause an

increase in weight, due to the increase in the gravitational
field:

S5W/W = 60, tana (191)

The combined effect of (190) and (191) is small, but

weakly stabilising, since (5W/W - 8Vo/Vo) is negative.

It is apparent that there exists an equilibrium point Q'

near to Q which can be reached by each skyhook in turn.

However, the skyhooks must be able to guide the outgoing

ring in a suitable direction, or within a suitable range of

directions.

Figure 27 isa schematic view of the rings passing through a

skyhook. The focussing effect is produced bya passive arrange-

ment of magnetic fields (the lift coils). The focusing is not

critical; as long as the ring comes out more nearly on the

correct path than when it went in, the chain of skyhooks

will remain stable.

Several other properties of an ORS are relevant. Passive

damping by ladders has already been mentioned: this will

reduce oscillations. The orbital rings have been treated as if

they were fluid streams, in reality they will have some

strength and will therefore smooth out sudden perturbations,

allowing the skyhooks time to move and adjust themselves.

Furthermore, the skyhooks can use their linear induction

motors for active stabilisation of position and for control of

the orbital velocity of the rings.
It is apparent that a discrete-skyhook OPS which is stable

to small perturbations can be built. Nevertheless, a great deal
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needs to be done in working out the exact behaviour of a°

particular systems and in defining the limits of stability.

7. SUMMARY AND CONCLUSIONS

This paper has been concerned with the theory of Orbital

Ring Systems and Jacob’s Ladders, and diverse kinds have

been considered.
The initial simple concept involved a massive ring in a

nearly circular low orbit, supporting several ladders hung

from skyhooks. It was noted that there is no particular
limit to the number or weight of ladders, or to the number

or mass of rings. Counter-rotating pairs of rings could be

precessed to follow the rotation of the Earth (or, clearly,

any other planet or massive body) and could be oriented in

any direction.

The concept was developed by noting that the orbital

rings could be enclosed in another ring, a geostationary

continuous skyhook. Clearly, such a system could be

brought down into the atmosphere, or on to the surface, or

even set up underground, provided that the orbital rings

themselves were held in vacuum.

The ORS could also be made non-circular, with eccentric

systems to any orbital height being possible.Precession of

an EORS is allowable, making available a wide range of

orbits, including orbits about more than one body (Earth

and Moon together, for example).
A further generalisation was made by considering in-

complete rings; Partial Orbital Ring Systems would have end-

points on the ground, linked by lengths of eccentric contin-

uous skyhook ORS, enclosed for passage through the

atmosphere.
The path of a PORS (or, indeed, of any kind of ORS)

can be modified further by allowing it to intersect another;

at the intersection the rings can be diverted in various

directions, so that almost any path required could be obtain-

ed. A network of orbital rings following lines of latitude is

one of the manv possible arrangements.
It is clear that anORS does not have to contain contin-

uous cable; streams of discrete masses could be substituted

(provided that the streams are not too irregular or sparse),

producingreasonable approximations to the various kinds

of ORS. This opens up possibilities for the transfer of

momentum and energy over long distances, where a more

conventional continuous ORS might be excessively massive

or insufficiently flexible.

We see, then, that the theoretical family of Orbital Ring

Systems is a large one; we can expect the range of applica-

tions to be correspondingly diverse. In Parts 1 & 1! I shall look

at some of those applications, from the most straightforward

(such as a simple ORS in Low Earth Orbit used for lifting

payloads into space) to the most exotic (such as an artificial

planet surrounding the Sun!). In the main I shall be con-

cerned with how simple Orbital Ring Systems could actually

be built and (very tentatively) how much they would cost.

L shall also be looking into such issues as reliability and

safety, and the wider implications for mankind.

APPENDIX 1. TUBULAR LADDERS

Atmospheric Pressure on Evacuated Tubes

Consider a cylinder, radius ro, and let the thickness of the

walls be d. Let the cylinder be squashed out of shape slight-

ly, so that the radius of curvature at some point is r. If

d<rg then the surface of zero strain is halfway through the

cylinder wall (see Fig. Al). Let x be the distance outwards

from this surface.

Consider an element of length dl and thickness dx at
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Fig. A2. Lowest Mode of Distortion of Cylinder.

distance x

Extension of element= x x _ dl

: to (A1.1)

Integrating over the thickness of the cylinder we have

d/2 d/2
Mean square extension= f x?-d1?- 1 1 7dx/f dx

ty FD sah

(A1.2)

Mean square extension = a? 1 1
?

(di)? (A1.3)
412 5 1%

The simplest (lowest energy) mode of distortion of the

cylinder is shown in Fig. A2. When the displacement is small

the overall shape may be approximated by four circular

quadrants, alternate quadrants having radiir, and r,. One

(say r,) is less than ro, the other greater; but the total

circumference remains the same.

Le. ory + 12
= 21g (A1.4)

Let the RMS extension be € and sum over all four quad-
rants

ead 1 1 2745 + 1 1
ALS

12 (C- To CC ro) }
27To

( °)

Substituting from (A1.4) and simplifying, we obtain

e? = (d?/12) (tg-11) / ry82rd, (A1.6)

For small deviations, when (1-r,/1to9) <1,

e? = (d?/12) (1-ty/t9)?/13, _ . (A147)

Now, if the internal area be A then

A = Yar? + Yar? -(12-12)* (AL.8)

Orbital Ring Systems and Jacob’s Ladders -- |

Substituting from (A1.4) and simplifying, we obtain

A = arg + (1-4) (ro-1)° (A1.9)

So the change in internal area (AA=A-A,) is given by

AA = (n-4) (19-1)? (A1.10)

Let the external pressure be P and the Young’s Modulus
of the cylinder be E. Then for an element dh along the

cylinder.

Net Energy Change = P.AA.dh + 4Ee?. 2nrod. dh

(A1.11)

. Net Energy Change = (19 - 11) (P(m-4) + E(a/12)(d/r9)?)

(A112)

Thus, in the limit when the cylinder is about to crumple
under the external pressure (energy change is turning
positive) we have

P(n-4) + E(m/12)(d/to)? = 0 (A113)

Solving for (d/rpo) when P = Pmay we obtain

(d/tg) = 1.49 x (Pmax/E)
!2

(A1.14)

When the atmosphere is to be excluded from a cylinder
Pmax2PatmosFr,for steel (E = 2 x 10?! Nm‘) and with

Patmos = 10° Nm™ we have

(d/to)min * 0.012 (A1.15)

However, when a hoop is used to bear atmospheric
pressure, the effective pressure is increased. Let W be the
ratio of the distance between hoops to the height of each

cylindrical hoop, so that Pmax2W Patmos

(d/to)min © 0.012 w?/3 (A1.16)

Equation (A1.16) can be used in reverse to give the maxi-
mum allowable value of W for a given (d/rg).

Modes of Vibration of Ladder Hoops

The hoops or cylinders may vibrate in the series of eigen-
modes shown in Fig. A3; the circular quadrant approxima-
tion for the first eigenmode (Fig. A2) has major and minor
axis rg and rp at the peak displacement.

By inspection

Ty + (r2 ~ ry) V2/2
T2 - (rz - 14)V2/2

Ta (Al.17)

& tb (A1.18)

Let the amplitude of the oscillation be ag (ag = ¥%(rg-rp))

ao
= A(ty-t2) (1-2) (A1.19)

Substituting from (A1.4) we obtain
ao

= (fo- 11) 2-1)
.

(A1.20)

Let the RMS displacement be X

X? = Yaad (A1.21)
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Fig. A3. Eigenmodes of Vibration of Cylinder.

Let the potential energy at maximum displacement be p

per unit volume and let the loading mass per unit volume be

PL

p
= “Ee? (A1.22)

Substituting from (Al .7), (A1.20) and (A1.21) we have

p
= wEX?. d? /(6(3 - 2/2)r4) (A1.23)

Hence the frequency of oscillation, is given by

vy
= (1/2m) (2p/X?py)” (A1.24)

2. vy
= /3/6n) 1 +-V2/2) (air) El)”

= 0.157(d/12)(E/py)” (A1.25)

Let the phase velocity be Vs and the wavelength y= 7To.

Then

Vg
= (3/6) (1 +V2/2) (dito) (E/py)”

~ 0.493 (d/to) (E/p 1)” (A1.26)

APPENDIX 2 CORIOLIS EFFECT

Coriolis Force on Ladders

The Coriolis force is a fictitious force arising from the Earth’s

rotation; it only affects objects moving towards or away

from the Earth’s axis. Thus the ladders, being stationary,

will experience no direct Coriolis force. However, the motion

of payloads will cause a force to act upon them and thence

upon the ladders.

Let the angular velocity of the Earth be Q and let the

horizontal component of that angular velocity be 22".

Q' = Q. cos (latitude) (A2.1)

Let the velocity of a geosynchronous test particle at

height y be Vs, relative to a particle on the Earth’ssurface

vertically below. This velocity will be horizontal and ina

West-East direction.

Now consider a particle being constrained to move

vertically — a sideways force is required. By differentiating

(A2.2) we may obtain the Coriolis acceleration.

acor
= Y Q' (A2.3)
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TABLE Al. Coriolis Effect on Ladders.

y() H V(2) Vm(3) acor(4) acor/(¥+g)

ms? km ms! kms" ms™ 10°

300 21.8 1.1 0.08 6.6

600 43.6 1.5 0.11 9.4

10 300 21.8 2.4 0.18 8.9

10 600 43.6 3.5 0.25 12.6

100 300 21.8 17 0.56 5.1

100 600 43.6 11.0 0.80
,

7.2

200 300 21.8 11.0 0.80 3.8

200 600 43.6 15.5 1.13 5.4

Notes:

(1) Vertical acceleration ,
(2) Coriolis speed difference at height H above the equator.

(3) Muzzle velocity.

(4) Coriolis acceleration at height H; the maximum value of the

coriolis acceleration for an equatorial ladder.

In Table Al I give some typical values of the maximum

Coriolis acceleration. It is apparent that, for the range of

muzzle velocities that are of interest the sideways force will

amount to 1% of the payload weight, Fp, or less. This force

can be countered, in part, by a suitably sloping ladder.

Coriolis Displacement of Falling Object

Consider an object falling freely under gravity from a height

H&R.

y
= H- ¥et? (A2.4)

Let the time taken to fall be 7. Then

r= (2H/2)” (A2.5)

Let the sideways displacement due to the Coriolis effect

be S. We have, from (A2.2),

Vs = det . 2" (A2.6)

Integrating, we obtain

1
Io

s= heQ'f tdt (A2.7)
°

s = 1g"? (A2.8)

Substituting for T yields

,

s = 10". (2H?/s)? (A2.9)

Evaluating this for the representativeladder. heights we

find (at the equator) .

‘ :

I

§(300 km) = 1.80 km (A2.10)

& S(600 km) " 5,09 km (A2.11)

This is the distance that the top of the ladder will move



sideways if it is dropped freely (multiply by the cosine of

the latitude for non-equatorial ladders). So if anything falls

off a vertical ladder it can land up to this distance to the

east of the ground station.
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An artist’s impression of an Orbital Ring

in this issue of JBIS.

System (ORS) in polar orbit. Part Fof a series of papers on this cone cept appears


