#format jsmath = Plane Crossing Velocity = Launch loops will be located slightly south of the equator, so they will launch into latitude-inclined transfer orbits, crossing other circular equatorial orbits. What is the relative velocity compared to an object in a circular equatorial orbit? The launch orbit has a perigee of $ r_p $ and an apogee of $ r_a $. Earth's standard gravitational parameter $ \mu $ = 398600.44 km³/s². The orbital radius and velocity are: || $ r = { \Large { { a ( 1 - e² ) } \over { 1 + e \cos( \theta ) } } } $ || $ a = { \Large { { r_a + r_p } \over 2 } } ~ ~ ~ ~ e = { \Large { { r_a - r_p } \over { r_a + r_p } } } ~ ~ ~ ~ ~ ~ \phi $ is inclination $ ~ ~ ~ ~ ~ ~ \theta $ is orbital angle || || tangential $ v_t = v_0 ( 1 + e \cos( \theta ) ) \cos( \phi ) $ || $ v_0 = \Large { \sqrt{ { \mu \over 2 } \left( { 1 \over r_a } + { 1 \over r_p } \right) } } $ || || radial $ v_r = e v_0 \sin( \theta ) $ || north/south $ v_z = v_0 ( 1 + e \cos( \theta ) ) \sin( \phi ) $ || The transfer orbit crosses the equatorial plane at $ \theta = \pi/2 = $ 90 degrees, the semi latus rectum, so the equations simplify to: || $ r = a ( 1 - e² ) $ || $ \Delta v_t = v_0 ( 1 - \cos( \phi ) ) $ || $ v_z = v_0 \sin( \phi ) $ || $ v_r = e v_0 $ || These simplify to: || $ r = { \Large { { 2 r_a r_p } \over { r_a + r_p } } } $ || $ v_0 = \sqrt{ \Large { \mu \over r } } $ || $ \Delta v_t = v_0 ( 1 - \cos( \phi ) ) $ || $ v_z = v_0 \sin( \phi ) $ || $ v_r = e v_0 $ || Note that $ v_0 $ is the circular orbit velocity at radius $ r $. Assume a launch loop at 5° south latitude with a altitude of 100 km and a perigee radius of 6478 km. What are the equator crossing velocities relative to circular orbits? ||<-2> Destination ||<-5> plane crossing $\Delta$V compared to circular || [[attachment:planecross.ods | libreoffice spreadsheet ]] || || || radius || $ r_0 $ || $ v_0 $ || $\Delta v_t $ || $ v_z $ || $ v_r $ || || || km || km || km/s || km/s || km/s || km/s || || ISS || 6800 || 6635 || 7.7508 || 0.0295 || 0.6755 || 0.1880 || || M288 || 12770 || 8596 || 6.8097 || 0.0259 || 0.5935 || 2.2260 || || M320 || 13532 || 8762 || 6.7449 || 0.0257 || 0.5879 || 2.3777 || || O3B || 14420 || 8940 || 6.6773 || 0.0254 || 0.5820 || 2.5376 || || GPS || 26538 || 10414 || 6.1867 || 0.0235 || 0.5392 || 3.7590 || || GEO || 42164 || 11231 || 5.9576 || 0.0227 || 0.5192 || 4.3707 || || Moon || 384400 || 12741 || 5.5932 || 0.0213 || 0.4875 || 5.4078 || Note that lunar $ r_0 $ comes pretty close to M288, the original server sky orbit. It may be better to change the server sky orbit to M320 (R=2.122 Re), which moves it farther from the proton belt, LAGEOS, and the lunar crossing, and provides more sunshine. That makes the orbital repeat cycle 9 overhead passes in two days, rather than 10. Note also that the numbers differ from 12789 km for M288 and 14441 km for O3B/M360. Brain fail, but this may be the J₂ oblateness effect. If not, I've got a lot of pages to correct.