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Vertical Space Elevator  Cables

Space elevator cables using known materials must be tapered − thicker at the middle,

thin at the ends. An equatorial space elevator cable starts at an altitude of 6378

kilometers above the center of the Earth, which is rotating at 72.9 microradians per

second. Thus, equatorial rotational velocity is 465 meters per second at sea level. The

gravitational acceleration is 9.81 meters per second, with 0.03 meters per second

subtracted for centrifugal acceleration.  

A straight cable extending to infinity from the equatorial surface, and rotating with

the earth at angular frequency ω , will ( at radius r ) see a centripedal acceleration of:

a r a R r rg o( ) ( / )= −2 2ω
(1)

The first term is the gravitational acceleration, equal to the gravitational acceleration

ag when the radius r equals the radius of the Earth’s surface, R0 .  The second term is the

centrifugal force, which is the angular frequency ω  squared times the radius r .  The first

term diminishes withr , while the second term increases.

Geosynchronous orbit is the radius where this acceleration is zero, or
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Which computes to 42,200 kilometers radius, or 35,800 kilometers altitude.  A cable

segment at radius r  with a length dr and a weight per unit length of m A r drr = ρ ( ) will

add a tensile force df r( )  to the cable of 



( )df r A r a r dr A r a R r r drg o( ) ( ) ( ) ( ) ( / )= = −ρ ρ ω2 2

(3)

The force in the cable should be some fraction D of the maximum sustainable force

that the cross section A r( ) can stand. D should be less than 0.7 or so. The cable has to

support non−structural elements, and will also have axial tension vibrations due to

uneven acceleration or jerks from the payload drive motors. It will take quite a bit of

engineering magic to make D as large as 0.7; smaller numbers may be more prudent. So

the force in the cable is designed to be:

f r DSA r( ) ( )=         (4)

Combining (3) and (4) we get the following differential equation for the cable cross

section A r( ) :

( )DSdA r A r a R r r drg o( ) ( ) ( / )= −ρ ω2 2

      (5)

This can be recast:
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and integrated:
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Defining A A R0 0≡ ( ) as the cross section at the Earth’s surface, (7) can be solved as
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where the support length 
L
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 is the strength to weight ratio.

In exponential form:
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This equation grows rapidly slightly above the surface, where r is only slightly

larger than R0 , then grows slowly, reaching a maximum at geosynchronous radius rGEO :
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where the dimensionless factor K  is defined as:
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This is small;  equation (10) can be approximated as:
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As you can see from (12), if the support length is much shorter than the Earth’s

radius, the exponential can grow very large.

The volume of the cable can be integrated out to infinity. Obviously, a real cable

will be terminated with a lump mass somewhere above geosynchronous orbit. However,

more terminating force is possible with a smaller total mass if an infinite cable is

assumed. Since the infinite case is easier to calculate, we will integrate (9), modified by

(11), to infinity:
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Lets make two further substitutions,
X
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I don’ t know how to integrate that analytically; so, let’s integrate it numerically for

various values of X.  We get the following table (D=0.7) :

Material LSUPPORT X A

A
MAX

0

Volume

A R0 0

Kevlar 49 & Epoxy       84  km 108.5 3.30e36 8.04e36
Zylon PBO & Epoxy      200 km   45.6 2.23e15 8.19e15
Nanotech Quartz      665 km   13.7 4.09e4 2.68e5
Carbon Nanotube   2,500 km     3.6 16.3 201
Nanotech Diamond 15,000 km     0.6 1.59 62

Note: the last three numbers are not experimentally demonstrated, nor have any of these numbers been
peer reviewed − use at your own risk!

Obviously, a practical space−elevator cable will require nanotechnology or

something much like it. Assuming diamond materials launched into orbit and a space

elevator constructed from space, it will take a while for a space elevator to "pay back" its

own mass.  

The most effective space elevator would accelerate small payloads quickly to launch

velocities, so they can free−fall up the cable, relieving strain as rapidly as possible.

Assume a steady stream of small payloads with a surface rest weight of 1/3 of that

supportable by the bottom of the cable, and that the payloads are launching at 3 gees, for

a net vertical acceleration of 2 gees. These payloads will reach geosync−capable



velocities of ≈0.88 escape velocity, or 9850 m/s2, in 500 seconds, at which point another

payload may be lifted. If each payload contains nothing but more cable stuff, the

payload volume will be L ASUPPORT × 0 3/ . A carbon nanotube cable could thus lift the

mass of a second nanotube cable in about 770Kseconds (absolute best case!) while a

nanotech diamond cable could lift its mass in 40K seconds. However, neither of these

best−case scenarios include propulsion motors for the 3 gee boost; smaller boost rates

and extra mass increase the numbers significantly.  

If a diamondoid vertical space elevator cable is 5 mm in diameter at the ground, it

will have a total volume of 7700 cubic meters, and a mass of 10,000 tons. Lifting this

amount of mass to geosyncronous orbit requires 4.8e14 joules, or 12 GW of power at the

40Ksec rate. Obviously, this will take cables much larger than 5mm in diameter to carry,

and extremely large motors in the payloads − the calculation breaks down. The actual

limit on space elevator replenishment rate will probably be set by other considerations

than "perfect lifting capacity".

Diagonal Tapered Cables:

The Launch Loop uses much shorter cables, but they do not hang straight down.

This complicates the analysis, but on the other hand we can safely make the worst case

assumption that the gravity field does not change significantly over the height of the

Loop (< 4%).

The diagonal cables are intended to relieve vertical, lateral, and axial forces. This

requires three cables per set, and horizontal forces in each set. We will examine each

cable separately, using x and y coordinates and l as the dependent length coordinate. The

force is axial to the curving cable, with the x component fx constant. The fy force

component increases vertically with the gravitational weight of the cable. We will use a

safety factor of  D  and a support length of  LSUPPORT  as before.



The cable starts at the surface y=0 with a slope ′y0 . Each incremental segment of

cable dy has a slope ′y , a length dl dy y= + ′1 1 2/ , an axial force

of
f f yy= + ′1 1 2/

, a weight proportional mass proportional to length and cross

section proportional to force of
df a Adl f
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. This is fairly easy

to integrate, resulting in 

MORE LATER


