#format jsmath = Hypersonic Notes = ------- . inviscid - laminar, low turbulence, low Reynolds number . '''Modern compressible flow : with historical perspective''' John David Anderson, Jr 1982 PSU QA911 .A6 === Hypersonic and High Temperature Gas Dynamics === John David Anderson Jr 2000 AIAA '''page numbers in book, pdf+6''' .p05 Apollo reentry Mach 36 .p13 M36 15 degree cone, 3 degree shock layer . calorically perfect gas, γ = c,,p,,/c,,v,, = 1.4 ratio of specific heats .p15 boundary layer thickness $ \delta ~ \propto ~ {M_∞}^2 / \sqrt{ R_{e_x} }$ where $ R_{e_x} $ is the local Reynolds number .p16 Reynolds number ... per foot? .p17 Apollo reentry Mach 36, 52 km altitude, 11000 Kelvin (40x denser than 80 km, 1200x denser than 100 km) .p18 chemically reacting gas is colder .p19 O₂ dissociates at 2000K to 4000K, N₂ 4000K to 9000K, above that ions .p19 convective heating $q_c$, radiative heating $q_r$ 30% for Apollo .p20 100 km, low density flow, "velocity slip" and "temperature slip" at surface .p20 higher still, not continuum, use kinetic theory. At 150 km, free molecular regime .p21 Knudsen number, $ Kn = \lambda/L $ where $ \lambda = $ mean free path, $ L = $ characteristic length . $ Kn $ 0.001? to 0.3 Navier-Stokes .p23 $ p $ surface pressure, $ \tau $ shear stress (viscous flow phenomena) .p26 heat conduction $ q_w ~ = -k_w \left( { { \partial T } \over { \partial y } } \right)_w $ ... more in Part 2 .p26 radiation 30% Apollo, shock layer 11,000K ... more Chapter 18 . ------ .p795 references