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A procedure for constructing Earth-Mars cycler orbits in a simple solar system is 
presented.  Solutions from the multiple revolution Lambert problem are utilized to find 
free return Mars trajectories.  Multiple combinations of these symmetric return orbits are 
patched to sequences of full and half-revolution return orbits with Earth-generated 
gravity-assisted maneuvers.  An algorithm is developed to find all useful combinations of 
direct returns that have a combined period of any integer multiple of the synodic period.   
Given a sequence of direct returns, a procedure is then developed to minimize the 
maximum of all the turning angles associated with the flybys necessary to maintain and 
re-initiate the cycler.  The method identifies 24 purely ballistic cyclers with periods of 
two to four synodic periods, 92 ballistic cyclers with periods of five or six synodic 
periods, and hundreds of near-ballistic cyclers.  These resulting orbits have diverse 
characteristics that could benefit a variety of potential missions.   While the method finds 
several known cyclers, most of the orbits presented are previously undocumented. 

 
NOMENCLATURE 
 
Symbol Description 
a semi-major axis 
AR Aphelion Ratio 
fj number of flybys required to re-initiate the jth symmetric return 
FR full-revolution 
h total number of half-years allotted for full or half-revolution direct returns during one cycler period,  h ≥  0 
hj total number of half-years allotted for full or half-rev returns associated with the jth symmetric return,  0 ≤  hj ≤  h  
i ith solution, by ascending semi-major axis, from the multiple revolution Lambert problem,  1 ≤  i ≤  2NMAX +1 
INT( ) operator that yields the integer part of its argument 
MOD( , ) operator that yields the remainder of the first argument divided by the second argument 
N number of complete revolutions made by a symmetric return,  N ≥  0 
p The period of the cycler is p synodic periods.  p ≥ 1 
r radius 
s total number of identical symmetric returns during one cycler period,  s ≥ 1  
sj jth symmetric return 
TOF time of flight for a symmetric return 
SR symmetric return 
TR Turn Ratio 
TSYN synodic period 
v heliocentric spacecraft velocity vector 
v∞ planet-centered velocity vector before or after flyby 
ve heliocentric Earth velocity vector 
α, β, SP intermediate variables for Lambert’s equation 
φ , λ latitude and longitude in reference to the velocity diagrams,  see Table 3 
γ heliocentric turning angle 
δ geocentric turning angle 
δMAX the minimized maximum of δMINIMAX-j for j=1..s 
δMIN minimum turning angle required to achieve a full-revolution direct return  
δMINIMAX-j the minimized maximum turn angle required to re-initiate the jth symmetric return 
θ, r1, r2, c input geometry for Lambert’s equation,  see Figure 1 
µ gravitational parameter 
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INTORDUCTION 
 

As space exploration advances into the twenty-first century, the development of a sustained human 
presence on Mars is a reasonable goal in the foreseeable future.  Recent1 interest in cycler orbits as a 
feasible alternative to the traditional human crewed Mars missions have given researchers new incentive to 
identify and classify these trajectories.  The concept of a cycler trajectory, one that shuttles between two or 
more celestial bodies, is not new.  Several previous studies with favorable results have shown that many 
such trajectories exist, both ballistic and powered.  The purpose of this paper is to combine previous 
strategies of finding potential cycler orbits into a generalized systematic search.  The goal is to use Earth 
powered gravity-assisted flybys to connect symmetric, half-rev, and full-rev direct return orbits in a logical 
manner such that the patched trajectory is periodic, requires realistic flybys, and encounters Mars in a 
simplified solar system.   

 
Recent work by McConaghy2 et al. found several cycler trajectories using single symmetric return 

orbits and one cycler using two different symmetric returns.  Byrnes3 showed that energy characteristics of 
a particular two-synodic period cycler could be considerably improved by including half and full-rev 
returns.  Hollister4, Rall5 and Menning6 used non-linear search methods to find feasible combinations of the 
full and half-rev direct returns and symmetric returns limited to one revolution.  The work presented here 
combines these approaches into one non-iterative method that scans the defined solution space to identify 
and classify cycler orbits.   
 

The definition of a cycler and the solar system model is discussed first, followed by a detailed 
description of the three types of direct returns: full-rev, half-rev, and symmetric.  The following two 
sections discuss the procedure used to re-initiate an identical symmetric return directly or by using 
intermediate half or full-rev returns.  The free parameters associated with each intermediate flyby are then 
discussed, and a method is outlined to minimize the maximum required turning angle.  The next section 
presents the logic associated with including multiple symmetric returns, followed by a summary of the 
algorithm, and finally, the results and conclusions.   The method reveals many ballistic and near-ballistic 
cyclers with a variety of time and energy characteristics.  Included in the results are the Aldrin cycler7, the 
single symmetric return cyclers presented by McConaghy2 et al, and the two-synodic period cyclers 
presented by Byrnes3.  
 

In the context of this paper, the naming convention for the cycler orbits are of the form p-h-s-i, 
where the letters represent four numbers that uniquely identify a class of cyclers.  For example, a cycler of 
the class 4-3-2-12 has a period of 4 synodic periods, includes 3 half-years allotted for full or half-rev 
returns, and includes 2 symmetric returns using the 12th solution, by ascending semi-major axis, from the 
multiple revolution Lambert problem.  This is a class of cyclers because there are an infinite number of 
patched trajectories that share these qualities.  The order of direct returns and the distinction between full 
and half-rev is not specified in the naming convention.  Table 1 shows the seven different combinations 
possible for the order of the direct returns for the example given.   
 

Table 1:  Possible combinations for direct returns for a cycler with h=3 and s=2 

Number Sequential Combinations  
1 symmetric → symmetric → full-rev → half-rev 
2 symmetric → symmetric → half-rev → full-rev 
3 symmetric → symmetric → half-rev → half-rev → half-rev 
4 symmetric → full-rev  → symmetric → half-rev 
5 symmetric → half-rev → symmetric → full-rev 
6 symmetric → half-rev → symmetric → half-rev → half-rev 
7 symmetric → half-rev → half-rev → symmetric → half-rev  
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Additionally, there are free parameters, described in later sections, associated with each gravity-assisted 
flyby that patches the direct returns.  Therefore, a cycler of the class 4-3-2-12 is uniquely described if the 
order of the direct returns and all associated free parameters are specified.  An algorithm is developed to 
choose this order and these free parameters such that the required maximum turning angle of all the flybys 
is minimized given any feasible p-h-s-i class of cyclers.  The resulting optimized patched trajectory is 
referenced as Cycler-p-h-s-i.  The goal then, is to apply the algorithm to the entire solution space of feasible 
ranges for the variables p, h, s, and i.  The fixed characteristics of the optimized Cyclers are then analyzed 
and compared.  Of particular interest are the resulting cyclers that are entirely ballistic.  Once set in orbit, 
ballistic cyclers require no powered maneuvers to maintain.   
 
CYCLER DEFINITION 
 
 A cycler orbit can be generally defined as a perfectly repeatable round-trip trajectory that shuttles 
between any two or more planets.  By definition this is a periodic orbit expressed in any frame that rotates 
with a period equal to the synodic period.  An orbit is periodic in such a reference frame if the initial and 
final positions and velocities are equal.  Additionally, the initial and final relative geometry between all 
associated bodies must be the same.  The later condition is met if the period of the orbit is an integer 
multiple of the synodic period of the associated planets.  Above is the definition of a perpetual cycler and is 
only a subset of all cycler trajectories.  Other non-repeating cyclers may be defined to exist for any 
sequence of planet encounters, although this paper is restricted only to perpetual cyclers.  It is typically 
desirable to minimize the powered maneuvers required to maintain a given cycler.  Depending on the 
complexity of the solar system model in question, it may be possible to find a completely ballistic cycler.  
This is defined in this paper to be a repeatable orbit that, once set in motion, encounters two or more 
planets using only physically allowable gravity-assisted flybys.     
 
SOLAR SYSTEM MODEL 
 

A perpetual cycler with exact repeatability only exists in a very simple solar system model.  In the 
case of the true solar system, it is not feasible to exactly match initial and final conditions and geometries. 
As a result, solutions must be generated for several decades while simply ignoring the matching end 
conditions.  The obvious extension is to use a true cycler solution from the simple case as an initial estimate 
for the more complicated model.  The current study only addresses the first half of this process.  A  follow-
up study will expand the results to include true ephemerides.  The current model chosen is the simplest 
possible: the circular, coplanar solar system.  Although previous studies4,5 have shown limited success 
finding true cyclers in a model that includes eccentricity and inclination, the additional complexity and lack 
of symmetry compels most researchers to use the circular-coplanar model first. 

 
This simple solar system model is defined as follows: 

• The Sun is inertially fixed.  
• Earth is in a circular orbit with a period of 1 yr.  1 AU =149597870.691  km 
• Mars is in a circular and co-planar orbit with a period of 1.875 yrs.  
• A zero point patched conic method is used for orbit propagation. 

o Mars provides no gravity-assisted ∆v’s. 
o Earth is capable of providing instantaneous gravity-assisted ∆v’s with a zero-

radius sphere of influence.  µearth = 3.003489596325074E-006 AU3/TU2 
 

Canonical units are used for calculations and defined such that µsun=1 AU3/TU2.  The derived time 
conversion is 1 TU= 58.1324408670490 days.  The astronomical unit definition and Earth’s gravitational 
parameter were taken from JPL’s DE405 Ephemerides8.  The period of Mars is chosen such that the 
absolute geometry repeats every 15 yrs.  This value is used to be consistent with previous studies2,3 and for 
verification purposes.  This value could be changed to 1.8801 yrs., the true period of Mars, and have little 
effect on the results of this paper.  It is assumed that a very minor correction maneuver can be applied to 
the spacecraft at a great distance to target any altitude for an Earth flyby.   
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DIRECT RETURN TRAJECTORIES 
 
 Timing is crucial in the construction of a cycler.  The total cycler period must be an integer 
multiple of the synodic period.  If a spacecraft encounters the Earth prior to the necessary planetary 
alignment, a direct return may be used to re-encounter the Earth at a later time when the alignment is 
correct.  If the altitude of the required Earth flyby is physically possible, the maneuver requires no fuel.   
 

A direct return trajectory is defined to be any orbit that leaves a celestial body and returns to the 
same body directly with no powered or gravity-assisted maneuvers.  These can be categorized into three 
general classes of orbits4,9.  Figure 1 illustrates the half-rev, full-rev, and symmetric direct returns.   
   

 
Figure 1:  Three types of direct return trajectories 

 
 

Full-Revolution Direct Returns 
 
 For the sake of this paper, the Earth is the planet that generates gravity-assisted maneuvers to 
patch direct returns orbits, although these principles can be generalized to use any celestial body.  The 
Earth is modeled in this paper as being in a circular orbit; however, the following definitions of direct 
returns are also valid if eccentricity is included.  A full-rev direct return4 is any orbit that leaves the Earth 
and returns after the Earth travels exactly one revolution of the Sun.  For purposes of this paper, this is the 
working definition, thus the period of the full-rev direct return is constrained to be the same as that of the 
Earth.  Although technically, the spacecraft will eventually return to the Earth at the same location it 
departed if the period is any rational multiple of the Earth’s period.  These unconventional full-rev returns 
are the subject of further study and will not be investigated here.  At departure and arrival, the spacecraft 
and planet have the same radius from the Sun.  If the period of the spacecraft is also the same as that of the 
Earth, then applying Equation (1), the Energy Equation, it is clear that the velocities must be equal as well.  
Thus any orbit leaving the Earth with the same heliocentric velocity as the Earth will return after exactly 
one year.   

2

2 2

v

a r

µ µ
− = −

 
(1) 

   
If a spacecraft approaches the Earth with an arbitrary speed and direction, the geocentric speeds 

before and after an un-powered flyby are constrained to be equal.  The locus of all feasible points for the 
velocity after a gravity-assisted flyby is the surface of a sphere with radius v∞ centered at the tip of ve.  The 
locus of all feasible points where the heliocentric velocity of the spacecraft is the same as that of the Earth 
is simply a sphere of radius ve centered at the base of ve.  The intersection of these two spheres, called the 
full-rev circle, is the locus of all points after a gravity-assisted flyby such that both conditions are met and 
the spacecraft will return to the Earth after one year.  The geometry is illustrated in detail in Figure 2.  The 
profile view is added for clarity.  Once a spacecraft is on a full-rev direct return trajectory, it will encounter 
the Earth each year until a gravity-assisted flyby or any powered maneuver is performed.   
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Figure 2:  Gravity-assisted flyby velocity diagram 

 
Half-Revolution Direct Returns 
 

A half-rev direct return4 is any orbit that leaves the Earth and returns after the Earth travels exactly 
one half-revolution of the Sun.  Again, for purposes of this paper, this is the working definition.  
Technically it is possible to find orbits that will encounter the Earth 180° from its departure after any odd-
integer multiple of a half-year.  And again, this is the topic of further study.  Only times of flight of one 
half-year will be considered.  If a spacecraft leaves the Earth in an orbit with the same semi-major axis and 
eccentricity as that of the Earth, but with an arbitrary inclination, it will encounter the earth after exactly 
one half-revolution of the Sun.  Figure 1 shows the spacecraft coming out of plane and re-encountering the 
Earth on the other side.  Clearly if no maneuver at Earth is performed, it will re-encounter at the initial 
departure, making it a full-rev return as well.  Therefore, the locus of points creating a half-rev return after 
an Earth encounter must lie on the full-rev circle of intersection shown in Figure 2.  It is known from 
Gauss’ version of the Lagrange planetary equations that a perturbing force perpendicular to the plane of the 
orbit will not change the orbit’s semi-major axis or eccentricity.  Therefore, the perturbing force of gravity 
during a flyby must be perpendicular to the plane of the Earth’s orbit in order for the resulting orbit to 
achieve a semi-major axis and eccentricity equal to that of the Earth.  There are two locations on the 
velocity diagram that are perpendicular to the Earth’s orbit plane and also on the full-rev circle of 
intersection.  The above-plane and below-plane locations for these points are marked with an ‘X.’   
 
Symmetric Direct Returns 
 

A symmetric return9, as seen in Figure 1, is characterized by an arbitrary time of flight and any 
angle of separation between departure and arrival that is not an integer multiple of π.  The transfer is 
therefore limited to be co-planar with the Earth.  The name is such because the departure and arrival points 
are symmetric with respect to the line of apses if the Earth is in a circular orbit.  The problem of connecting 
any two positions with a trajectory of any time of flight is known as Lambert’s Problem.  It is encountered 
frequently in astrodynamics and is well documented and understood10.  Traditional applications involve 
trajectories that make between zero and one revolution of the primary.  However, solutions may exist that 
make one or more revolutions10,11,12 if the time of flight is sufficiently large.  Generalized to include 
multiple revolutions, the Lagrangian formulation of Lambert’s equation10 is summarized as the following: 
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Using Equation (2), Figure 3 plots the time of flight vs. semi-major axis for N = 0..9.  The input geometry 
for this plot is illustrated by the symmetric return in Figure 1.  The curves in Figure 3 represent posigrade 
solutions, or 0<θ<π for this example.  A similar plot is obtained for the corresponding retrograde solutions 
using π<θ<2π.  Notice the time of flight is double valued for each N because of the short and long 
solutions.  In a typical application of Lambert’s theorem, the time of flight is given and the corresponding 
values for semi-major axis are solved iteratively.  For a given geometry, an arbitrary time of flight has an 
associated NMAX.   For example, from Figure 3, a time of flight of 20 TU’s has an NMAX of 3.  Given r1, r2, θ, 
and TOF, an algorithm is developed to identify NMAX and systematically solve for each of the 2NMAX +1 
corresponding values of semi-major axis.  Because the algorithm is very similar to the procedure described 
by Prussing11, it is not explained in detail.   It uses standard root-finding methods to bracket solutions and 
solve the transcendental equation for semi-major axis.  When calculating terminal velocity vectors, a 
singularity exists if θ is any integer multiple of π because the transfer plane is undefined.  Half and full-rev 
returns are subsets of these cases respectively.  In the context of cyclers of the form p-h-s-i, the time of 
flight, expressed in years, for a symmetric return orbit is given by Equation (3). This forces the total period 
of the cycler to be p synodic periods.    
 

2SYNT p h
TOF

s
−

=
 

(3) 

 
Figure 3:  Example multiple revolution Lambert solution (r1=r2=1 AU, θ=4π /7) 
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RE-INITIATION OF AN IDENTICAL SYMMETRIC RETURN 
 
 Once a cycler has competed a full cycle, a re-initiation maneuver is necessary to begin the next 
cycle.  This section discusses the conditions required to re-initiate an identical symmetric return using any 
combination of half or full-rev return trajectories.  Figure 4 shows an example of the geometry required to 
re-initiate a symmetric return trajectory using no intermediate returns.   

 
Figure 4:  Conditions required to re-initiate symmetric return trajectory 

The heliocentric spacecraft velocities at Earth departure and arrival are v1+ and v2- respectively.  
Due to symmetry, the magnitudes of these vectors are equal, and the orientation of v2- with respect to ve2 is 
a mirror image of v1+ with respect to ve1.  The velocity required to re-initiate an identical symmetric return 
is v2+.  Thus, it is clear that the required heliocentric turn angle is 2γ.  At t2 it is also clear that v∞- and v∞+ 
are coplanar with the Earth’s orbit.   These conditions apply for the re-initiation of any symmetric return 
trajectory.  The mirror image symmetry can also be seen in Figure 5. 
 

 
Figure 5:  Velocity diagram of a gravity-assisted flyby that re-initiates a symmetric return 

If only one flyby is used, Figure 5 indicates that a planar ∆v is required to re-initiate the 
symmetric return.   Alternatively, if the timing is not constrained, one or more full-rev direct returns can be 
performed prior to the re-initiation of the symmetric return.  This is possible because the geometry of the 
velocity diagram remains the same before and after a full-rev return.  In order to enter a direct return orbit, 
the tip of the intermediate v∞ must lie somewhere on the intersection of the two spheres on the full-rev 
circle.  Figure 6a shows an example that uses an intermediate full-rev return requiring two flybys to re-
initiate the symmetric orbit.  The geocentric velocity at the arrival location on a symmetric return is v∞1-.  
The first flyby requires a turn angle of δ1 in order to place the spacecraft on a full-rev direct return orbit.  If 
no powered or gravity-assisted maneuvers occur, after any integer multiple of years, the Earth and 
spacecraft return to the same location with the same heliocentric velocities.  As a consequence, the velocity 
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diagram remains unchanged at the time of the second flyby, thus v∞1+ = v∞2-, and a turn angle of δ2 is 
required to achieve v∞2+, thus re-initiating the symmetric return.  Figure 6b is a similar example requiring 
three flybys and two intermediate direct return orbits.  In these examples, the exact positions of the 
intermediate v∞’s on the dotted full-rev circle are chosen arbitrarily.  A following section will discuss a 
method to optimize the selection of these locations.  
 

 
Figure 6:  Gravity-assisted flyby velocity diagrams with full-rev returns 

Consider the example shown in Figure 6a, however choose the location of the intermediate v∞ to 
be the half-rev ‘X’ above the plane of the paper.  This is illustrated in Figure 7a. 
 

 
Figure 7:  Gravity-assisted velocity diagram with half-rev return 

Following the first flyby with a turn angle of δ1 the spacecraft enters a half-rev return trajectory.  If no 
powered or gravity-assisted maneuvers occur, the spacecraft will encounter the Earth after any integer 
multiple of a half-year.  If the next gravity-assisted maneuver occurs after an even number of half-revs, in 
terms of the velocity diagram, the situation is identical to a full-rev return.  However, if it occurs after an 
odd number of half-revs, then the velocity diagram changes.  This is illustrated in Figure 7b. After an odd 
number of half-revs, ve, not shown in Figure 6 and Figure 7 but shown in Figure 5, switches directions.  
Also, the geocentric velocity at the beginning of the half-rev return is opposite of that at the end, or        
v∞1+ = -v∞2-.  A turn angle of δ2 is required to achieve v∞2+, thus re-initiating the symmetric return.  Due to 
symmetry, it is clear that δ1 = δ2 for this example.  Figure 8 combines the two separate diagrams of Figure 7 
into one by fixing the direction of ve and aligning the respective top and bottom half-rev ‘X’s.  This is 
equivalent to rotating the diagram in Figure 7b by 180° about an axis perpendicular to the plane of the 
Earth’s orbit, then overlapping the two diagrams.  The profile view is included for clarity.  Because this 
view is two-dimensional and easy to illustrate, it will be used frequently for the remainder of this 
document.  
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Figure 8:  Velocity diagram of a half-rev return with ve fixed 

 
Turn Angle Optimization for Re-initiation of A Symmetric Return 
 

Thus far, this section has demonstrated how to re-initiate a symmetric return utilizing gravity-
assisted Earth flybys that may include full or half-rev return orbits.  As mentioned previously, a free 
parameter is associated with each full-rev return.  Additional parameters that are constrained but not fixed 
are the number of flybys before re-initiation.  For example, if a spacecraft is departing Earth on a full-rev 
return orbit and needs to wait 3 years before re-initiating, should the spacecraft use a gravity-assisted flyby 
at each of the following Earth encounters, or wait until the third encounter?  This is addressed by solving 
the following optimization problem: 
 

Minimize the maximum required turning angle necessary to re-initiate an arbitrary 
symmetric return orbit using any sequence of full or half-rev returns subject to the 
constraint that exactly hj half-years elapse before the re-initiation. 
   

Note that the goal is to minimize the maximum required turn angle not the sum of the required turn angles.  
This is chosen because the primary focus is to find ballistic cyclers.  It is acknowledged that a powered 
cycler13,14 in the simplified or real model may benefit from minimizing the sum rather than the maximum of 
the required turning angles. However, in the search for ballistic cyclers in a simple model, the difference is 
immaterial.  
  

If hj=0, the only option is to immediately re-initiate using one flyby as shown in Figure 5.  If hj=1, 
the only option is to use a half-rev return intermediate flyby before re-initiating as shown in Figure 8.  It is 
arbitrary whether the above or below plane maneuver is used.  If hj=2, the options are two half-rev returns 
or one full-rev return.  In the case of using one full-rev return, due to the geometry, the maximum turn 
angle is minimized if the two turn angles are equal.  This serendipitously occurs only if the intermediate v∞ 
terminates at the half-rev ‘X.’  This is identical to the case of using two half-rev returns.  Thus, only two 
flybys are required when hj=2.  If hj=3, the options are to use three half-revs, or one half-rev and one full-
rev return.  In either case, it is required to have at least one flyby with a turn angle equal to that required 
when hj=1.  It is decided to choose the option that requires fewer flybys in cases when additional flybys do 
not reduce the maximum required turning angle.  Therefore, when hj=1,2, or 3, two flybys are required 
(fj=2), one to navigate v∞ from the initial location to the half-rev ‘X,’  and one to navigate it to the final re-
initiation location.  Of course the times in between maneuvers are hj/2 yrs.  A similar argument can be 
made for hj ≥  4.  This is summarized in Table 2. 
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Table 2:  Optimal number of flybys necessary to re-initiate a symmetric return 

hj fj Velocity diagram Time between flybys (yr) 

0 1  - 

1 2 

 

t2- t1= ½ 

2 2 

 

t2- t1= 1 

3 2 same as hj =1 t2- t1= 3/2 

4 3 

 

t2- t1= 1 
t3- t2= 1 

5 4 

 

t2- t1= 1 
t3- t2= 1/2 
t4- t3= 1 

6 4 

 

t2- t1= 1 
t3- t2= 1  
t4- t3= 1  

7 4 same as hj =5 
t2- t1= 1  
t3- t2= 3/2 
t4- t3= 1  

8 5 

 

t2- t1= 1  
t3- t2= 1  
t4- t3= 1  
t5- t4= 1  

…
 

…
 

  …
 

hj even hj/2 + 1  
 tk-tk-1 = 1                    k = 2..f 

hj odd 2{INT(hj/4 + 1)}  
tk-tk-1 = 1                           k = 2..(f /2) 
tk-tk-1 = (1/2) MOD(hj,4)   k = f/2+1 
tk-tk-1 = 1                          k = f/2+2.. f  

 
Once the number of required flybys is known, it is desirable to space them along the full-rev circle 

in such a manner that the maximum turn angle is minimized.  Looking at Figure 5, define a spherical 
coordinate system using latitude and longitude for the sphere of radius v∞.  The origin of the coordinate 
system is the center of the sphere.  The associated z-axis is aligned with ve making the full-rev circle a line 
of constant latitude.  The x-axis is defined such that v∞- has only x and z positive components.  Figure 9 
illustrates this coordinate system with an example that requires five flybys (fj=5) to re-initiate the 
symmetric return.  The smallest turn angle that ensures a direct return is the flyby that moves v∞1- in the x-z 
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plane directly along the zero longitude line to the full-rev circle.  This angle, δMIN, is found from Equation 
(4) and is illustrated in Figure 9a.  

( )1cos cos cos sin sinMIN FR SR FR SRδ φ φ φ φ−= +  (4) 
Depending on the magnitude of this minimum turn angle, there are two cases to consider.  If v∞1- is 

sufficiently far from the full-rev circle, as seen in Figure 9a, then δMIN is the minimized maximum turn 
angle.  However, if v∞1- is sufficiently close to the full-rev circle, as seen if Figure 9b, then a unique 
longitude exists, 0 < λ < π/2, such that the turning angle, δb, is equal for all five flybys.  In this case, δb  is 
the minimized maximum turn angle.  

 

 
Figure 9: Turn angle optimization for a re-initiation that requires five flybys 

The latitudes of the full-rev circle and the symmetric return geocentric velocity vectors are given 
by Equations (5) and (6).    

( )1sin 2FR ev vφ −
∞ = −    (5) 

( )
1

12 cos  SR e ev vφ π
−

−
∞ ∞

 = −   
v vT

 
(6) 

The turning angles generalized for any fj > 2 are found using Equations (7) – (9).   
( )

( )
1 2 2

      

cos cos cos sin

               where 2

FR FRa a

a jf

δ φ λ φ

λ π

−= +

= −
 

 

(7) 

In order to solve for δb, Equation (8) must be solved iteratively for λ.  A unique solution exists for 
0 < λ < π/2 if δMIN < δa. 

( ) ( )
( ) ( )

2 2 2cos cos cos cos cos cos cos sin sin sin sin sin 0

2 / 2

FR FR SR FR FR FR SRb b

jb f

φ λ λ λ φ λ φ φ λ λ λ φ φ φ

λ π λ

+ − + + + − =

= − −
 

(8) 

( )1cos cos cos cos sin sinSR FR SR FRbδ φ φ λ φ φ−= +  (9) 
If fj = 1, the turning angle for the only required flyby is δc.   

2 SRcδ π φ= −  (10) 
If fj = 2, the turning angle for both required flybys is found by solving Equation (9) with λ = π/2.  

Equations (4) and (7)-(9) are derived using the known latitudes and longitudes of the vectors that define the 
turning angles.  These coordinates are summarized in Table 3.  Equation (8) is derived by setting the angle 
between v∞1- and v∞2- equal to the angle between v∞2- and v∞3- in Figure 9b.  This requires that v∞2- is 
orthogonal to v∞3- -  v∞1-. 

Table 3:  Coordinates for heliocentric flyby velocities 

           Figure 9a             Figure 9b 
 latitude longitude (west)  latitude longitude (west) 
v∞1- φSR 0  φSR 0 

v∞2- φFR 0  φFR λ 

v∞3- φFR λa  φFR λb +λ  
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Due to symmetry, Equations (7) - (10) are still valid if hj is odd and a half-rev return is required.   
However, caution is advised when solving for velocities after an odd number of half-rev returns because the 
velocity diagram switches orientation as indicated in Figure 7.   

 
Given the value of hj, any arbitrary symmetric return can now be re-initiated using fj optimized 

flybys.  The calculation of the minimized maximum required turning angle, δMINIMAX-j, can be summarized 
as follows: 

 
1) Calculate δc from Equation (10) 
2) Get fj from Table 2 
3) IF fj =1  

      δMINIMAX-j = δc 
ELSE IF fj =2 
      δMINIMAX-j = cos-1(sin φSR  sin φFR ) 
ELSE IF fj >2 
       Calculate δMIN, δa using Equations (4) and (7) 
        IF  δMIN ≥ δa 
                δMINIMAX-j = δMIN 
        ELSE IF  δMIN < δa  
                calculate δb using Equations (8) and (9)
                δMINIMAX-j = δb 

 
INCLUSION OF MULTIPLE IDENTICAL SYMMETRIC RETURNS 
 

As long as the total period of the cycler is an integer multiple of the synodic period, it is possible 
for one cycle of a given cycler to consist of multiple symmetric returns.  If they are identical, the magnitude 
of v∞ remains unchanged at all of the Earth flybys.  As seen in Table 1, the spacing of multiple symmetric 
returns is a free parameter.  This section addresses the logic for choosing this spacing.  Given a total 
number of symmetric returns and half-years allotted for full and half-rev returns, s and h respectively, the 
purpose of this section is to determine how many half-years, hj, should be grouped with each symmetric 
return, sj.  Note that by definition, 

1=

=∑
s

j
j

h h
 

Once a specific symmetric return is grouped with an optimal number of half-years, the procedure 
described in the previous section can be applied independently to solve for the best flyby configuration and 
associated δMINIMAX-j for that grouping.  The goal is to minimize the maximum of  δMINIMAX-j for j=1..s.  The 
resulting angle is δMAX.  The logic is briefly outlined below: 

 
1) Calculate δc , δMINIMAX-j using hj=INT(h/s) 
2) IF δc ≥  δMINIMAX-j 

THEN  h1..s-1= INT(h/s) 
             hs  = INT(h/s) +MOD(h/s) 
ELSE   h1   = h 
             h2..s  = 0 

3) δMAX = δMINIMAX-1 
 

This is derived based on the following observation.  If hj ≥ 1, δMINIMAX-j will stay the same or 
decrease if the value of hj is increased.  However for hj=0, δMINIMAX-j may increase or decrease if the value 
of hj is increased, depending on the geometry of the symmetric return.  Consider the geometry in Figure 9a.  
Because δc < δMIN, it is clear that the maximum required turning angle is lowest if no intermediate direct 
returns are used.  In Figure 9b however, it is clear that additional flybys will lower δMINIMAX-j.   

 
As an example, if h=10 and s=3, the two possible cases are {h1=3, h2=3, h3=4} or {h1=10, h2=0, 

h3=0}.  The location of 10 and 4 within respective sets is arbitrary.  Note that for h ≥ 1, δMIN is the lower 
bound for δMAX.   
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ALGORITHM OVERVIEW 
 

An overview of the algorithm is shown in Figure 10.  It searches for all cycler solutions with 
periods from 1 to pMAX synodic periods.  A feasible cycler of the form p-h-s-i is one whose time of flight for 
the symmetric return is sufficiently large such that NMAX from Lambert’s solution is positive.  If NMAX =0, 
the only solution to Lambert’s problem is the Earth’s orbit.  Also, a negative TOF is clearly not a feasible 
candidate.  Equation (3) indicates that TOF is indirectly related to h and s.  Therefore, in order to analyze 
the maximum number of feasible cyclers, it is desirable to choose hMAX and sMAX sufficiently large.  The 
algorithm simply ignores infeasible combinations of p, h, and s.    
 

 
Choose ARMIN, TRMIN, pMAX 
hMAX =5pMAX,  sMAX =3pMAX 
DO  p=1.. pMAX 
    DO  h=1.. hMAX 
        DO  s=1.. sMAX 
            Calculate TOF 
            IF  TOF > 0 
 

Input 
Earth location at t0 

and  t0+TOF 

Multiple 
Revolution 

Lambert 
Subroutine 

Output 
Posigrade symmetric 
return solutions for 

i=1..2NMAX +1 
 

                    IF NMAX >0 
                           DO i=1..2NMAX +1 
 

Subroutine that  
determines hj for each sj 

 

Subroutine that optimizes the 
intermediate flybys for each 
group of  hj and sj  for j=1..s 

 

Subroutine that calculates the 
velocities before and after 

each flyby and corresponding 
turn angles 

  

                                       Calculate TR and AR 
                                       IF   { TR>TRMIN   AND   AR>ARMIN  }    
                                              THEN   Record Cycler-p-h-s-i and properties 
                            END DO (i) 
                  END IF 
            END IF 
        END DO (s) 
    END DO (h) 
END DO (p) 
 

Figure 10:  Algorithm Summary 

RESULTS 
 

Table 4 lists an example of resulting cyclers using the algorithm described in Figure 10.  Each 
column represents important characteristics to consider when evaluating a particular cycler trajectory.  The 
Aphelion Ratio is the ratio of the maximum ecliptic-plane cycler aphelion radius to 1.52 AU, the radius of 
Mars.  For AR > 1, the cycler can intercept Mars without a powered maneuver.  The Turn Ratio is the ratio 
of the maximum physically allowable turning angle to the maximum required turning angle, δMAX.  The 
maximum allowed turning angle is based on a 200 km altitude Earth flyby.  For TR > 1, all required flybys 
are physically attainable without powered maneuvers.  Cyclers described in this paper are only guaranteed 
one Mars encounter each period.  Therefore the duration between successive Mars encounters is p synodic 
periods.  One approach that increases this frequency is to initiate a new cycler each synodic period.  The 
obvious downside is the cost of each additional cycler vehicle.  Thus p vehicles are required to ensure a 
one-synodic period duration between successive Mars encounters.  The magnitude of the planet-centered 
velocities are important primarily because they represent the maneuver requirements to taxi to and from the 
planets and an existing cycler.  The geocentric velocity is also the maneuver requirement to initiate the 
cycler from Earth.  These velocities are inversely related to the duration of the Earth-Mars transit.  The 
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inbound cyclers, although not reported here, have a short Mars-Earth transit instead of Earth-Mars.  These 
are easily found by adjusting the initiating time of the cycler.  An additional p vehicles are required to 
ensure a one-synodic period duration between successive Mars-Earth inbound trips.  Due to symmetry, the 
energy properties for inbound and outbound cyclers are identical9.   The last column shows the number of 
gravity-assisted Earth flybys and the geocentric turning angle associated with each one.  Depending on the 
specific needs of a mission, it may be desirable to have a large or small number of flybys.   

 
The ARMIN and TRMIN values used to generate Table 4 are somewhat arbitrary.  However, they 

were selected such that the resulting cyclers would be good candidates for optimization using a more 
realistic solar system, noting that the true radius of Mars varies from 1.38-1.67 AU.  A total of 39 cyclers 
are shown in Table 4, of which 24 are entirely ballistic.  The turn angle optimization described in previous 
sections is evidenced by the number, order, and values of the turn angles shown in the last column.  For 
example, the two symmetric returns for Cycler-4-9-2-8 have corresponding hj’s of nine and zero 
respectively.  The first symmetric return is re-initiated using all of the available half-years because the 
second can be re-initiated using no intermediate returns with only a 24° turn angle.  The best configuration 
for the first re-initiation is to use the δMIN turning angle of 83° to traverse down to the full-rev circle, 
followed by four equally spaced maneuvers with turning angles of 44.8°, and finally an 83° maneuver back 
to the re-initiation location.  The velocity diagram for Cycler-4-9-2-8 is similar to that shown in Figure 9a.    

Table 4: Two, three, and four-synodic-period ballistic or near-ballistic cyclers 
ARMIN=0.9, and TRMIN=0.9 

Cycler- 
p-h-s-i 

Aphelion 
Ratio 

Turn  
Ratio 

Earth→Mars 
(or aphelion) 
Time (days)

Earth v∞
(km/s) 

Mars v∞ 
(km/s) 

   Required Geocentric Turning  
   Angle at each Flyby (deg) 

2- 1- 1- 5a 0.95 1.11 207 4.1 2.0 92 92

2- 3- 1- 5b 1.08 0.92 143 5.4 5.3 93 93
2- 5- 1- 3 1.44 1.12 94 7.8 9.9 54 54 54 54
3- 1- 1-17 1.07 1.19 174 3.6 4.6 93 93
3- 1- 2-11 1.07 1.23 181 3.4 4.6 93 93 24
3- 1- 3- 9 1.43 0.93 123 5.1 9.1 95 95 16 16
3- 3- 1-15 1.19 1.06 141 4.3 6.8 94 94
3- 5- 1-11 0.94 1.80 231 2.7 1.5 70 70 70 70
3- 5- 1-13 1.43 1.15 115 5.4 9.2 73 73 73 73
3- 5- 2- 9 1.43 1.06 121 5.2 9.2 83 83 83 83 24
3- 7- 1- 9 1.07 1.56 175 3.6 4.6 71 71 71 71
3- 9- 1- 7 1.43 1.17 116 5.4 9.2 72 45 45 45 45 72
4- 0- 3- 7 1.07 1.18 160 4.3 4.9 85 85 85
4- 1- 1-22 0.94 1.37 256 2.7 1.6 92 92
4- 1- 1-24 1.15 1.11 173 4.1 6.1 94 94
4- 1- 2-14 0.94 1.40 250 2.6 1.5 92 92 24
4- 1- 2-16 1.43 0.93 132 5.2 9.2 95 95 24
4- 1- 4-10 1.43 0.93 129 5.1 9.2 95 95 12 12 12
4- 3- 1-20 0.99 1.29 268 3.1 2.5 93 93
4- 3- 1-22 1.26 1.01 154 4.7 7.6 94 94
4- 5- 1-18 1.07 1.55 196 3.6 4.7 71 71 71 71
4- 5- 1-20 1.44 1.15 137 5.5 9.3 73 73 73 73
4- 5- 2-12 1.07 1.40 191 3.4 4.6 81 81 81 81 24
4- 5- 3- 8 1.43 1.02 130 5.1 9.2 87 87 87 87 16 16
4- 6- 1- 3 0.91 1.50 154 6.8 2.1 46 46 46 46
4- 7- 1-16 1.20 1.38 163 4.3 6.8 72 72 72 72
4- 7- 1-18 1.77 0.96 120 6.6 11.4 74 74 74 74
4- 8- 1- 3 0.96 1.64 164 7.7 3.1 37 37 37 37 37
4- 9- 1-12 0.94 1.83 256 2.7 1.6 69 45 45 45 45 69
4- 9- 1-14 1.44 1.16 137 5.5 9.3 72 45 45 45 45 72
4- 9- 2- 8 1.44 1.05 132 5.2 9.2 83 45 45 45 45 83 24
4-10- 1- 2 0.92 1.46 263 10.2 3.6 30 30 30 30 30 30
4-10- 1- 3 1.03 1.65 131 8.9 5.0 31 31 31 31 31 31
4-11- 1-10 1.07 1.58 195 3.6 4.7 70 45 45 45 45 70
4-12- 1- 2 0.97 1.43 268 11.6 4.8 25 25 25 25 25 25 25
4-12- 1- 3 1.16 1.48 93 10.8 8.2 27 27 27 27 27 27 27
4-13- 1- 6 1.44 1.16 137 5.5 9.3 72 30 30 30 30 30 30 72
4-14- 1- 2 1.12 1.13 199 14.7 9.4 22 22 22 22 22 22 22 22
4-14- 1- 3 1.49 1.09 66 14.1 12.7 25 25 25 25 25 25 25 25

a  “Case 2” cycler described by Byrnes3 
b  “Case 3” cycler described by Byrnes3 

 
Several of the cyclers presented in Table 4 are worth mentioning.  Cycler-2-5-1-3 is an example of 

a solution with a relatively short Earth-Mars transit time, perhaps desirable for a human crewed mission.  
The benefits of the 94-day trip are offset by the relatively high terminal speeds.  Cycler-3-1-1-17,  Cycler-
3-1-2-11,  and Cycler-3-7-1-9  have low terminal speeds and require 2, 3, and 4 flybys respectively.  
Cycler-4-0-3-7 has a transit time of 160 days and relatively good terminal speeds using symmetric returns 
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only.  Cycler-4-3-1-20 has remarkably low energy requirements at Earth and Mars.  The speeds are low 
because the symmetric return portion of this cycler is very near a Hohman transfer.  At Earth, the cycler has 
a v∞ of 3.10 km/s compared to the Hohman value of 2.84 km/s, while at Mars the cycler  has a v∞ of 2.53 
km/s compared to the Hohman value of 2.57 km/s.  The Aphelion Ratio is 0.992, thus the cycler doesn’t 
quite reach Mars in the simplified model.  Cycler-4-5-1-18, Cycler-4-5-2-12, and Cycler-4-11-1-10 also 
have promising energy characteristics.   

 
Details about the flyby maneuvers for a few of the discussed solutions are provided in the tables 

below.  They have sufficient data to simulate one complete cycle plus the first leg of the second cycle for 
each described cycler.  The ecliptic is the x-y axis plane and the initial position of the Earth is always on the 
x-axis. 

Table 5:  Cycler-2-5-1-3 

Location Earth Mars Earth Earth Earth Earth Mars
time  (days) 0 94 652 1018 1200 1565 1659 
∆vx    (km/s) 6.50a 0 -5.19 1.40 -1.40 -5.29 0 
∆vy    (km/s) 4.35a 0 -1.41 -6.12 6.12 -0.98 0 
∆vz    (km/s) 0a 0 4.55 3.20 3.20 4.55 0 

[ ]0 AU at 1.41 0.57 0  mars t =rT

 
apowered ∆v required to initiate cycler from Earth  

Table 6:  Cycler-3-1-2-11 

Location Earth Mars Earth Earth Earth Mars
time  (days) 0 181 1083 1265 2348 2529 
∆vx    (km/s) 0.71a 0 -0.09 -1.48 -1.28 0 
∆vy    (km/s) 3.32a 0 -3.59 -3.27 0.62 0 
∆vz    (km/s) 0a 0 3.39 3.39 0 0 

[ ]0 AUat 1.15 0.99 0  mars t =rT

  
apowered ∆v required to initiate cycler from Earth   

Table 7:  Cycler 4-3-1-20 

Location Earth Marsb Earth Earth Marsb

time  (days) 0 268 2583 3131 3399 
∆vx    (km/s) -1.24a 0 0.18 2.42 0 
∆vy    (km/s) 2.84a 0 -3.24 -2.16 0 
∆vz    (km/s) 0a 0 3.09 3.09 0 

[ ]0 AU at 0.93 1.20 0  mars t =r T

   
apowered ∆v required to initiate cycler from Earth 
b0.008 AU from Mars (cycler aphelion)   

Table 8:  Cycler-4-5-2-12 

Location Earth Mars Earth Earth Earth Earth Earth Mars
time  (days) 0 191 1109 1474 1657 2022 3131 3322
∆vx    (km/s) -0.71a 0 3.38 -3.29 3.29 -1.80 1.29 0 
∆vy    (km/s) 3.34a 0 -2.86 -0.75 0.75 -4.04 0.62 0 
∆vz    (km/s) 0a 0 -0.50 -2.91 -2.91 -0.50 0 0 

[ ]0 AUat 1.03 1.12 0  mars t =rT

     
apowered ∆v required to initiate cycler from Earth      

 
Figure 11 shows the top-down view of one cycle of the cyclers presented in Table 7 and Table 5.  

The dots and numbers sequentially label the planet encounters.  A star next to a number indicates a flyby is 
required.  Two stars indicate a flyby that re-initiates the next cycle.  Parts c and d illustrate the same 
trajectories shown in parts a and b, but are plotted in a translating, rotating, and pulsating reference frame15 
that fixes both Earth and Mars for all times.   In such a frame, a true cycler orbit is exactly periodic.  This 
frame provides a good measure of periodicity when it is difficult or impossible to find a true cycler, as is 
the case for the realistic solar system.  Parts e and f are zoomed-in on the Earth several orders of magnitude 
from parts c and d respectively.  Note that all half and full-rev returns are out of the ecliptic plane for both 
cyclers in Figure 11.  Additional insight available from the pulsating frame is the visualization of near-
encounters with Earth or Mars.  As seen in part c, during the symmetric return, the cycler comes very close 
to a second Mars encounter and moderately close to a third Earth encounter.  However, this may be 
deceiving because the units of distance pulsate by definition in this frame.  When expanding the results to 
include true ephemerides, these additional near-encounters could be constrained to be true-encounters, thus 
doubling the frequency of successive Earth-Mars transits. The near-Hohman qualities of the Earth- Mars 
leg are responsible for the near-symmetry seen in part c.  

 
Figure 12 illustrates a 3D view of one cycle of Cycler-3-1-2-11.  The first leg leaves Earth en-

route to Mars via a symmetric return orbit.  After 1+ revolutions, an out-of-plane half-rev return connects 
two Earth flybys, then the second identical symmetric return completes the last leg.  The third flyby is 
required to start the process again.   The initial launch ∆v, the Earth gravity-assisted ∆v’s, and the times are 
shown in Table 6.    
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                               a)  Cycler 4-3-1-20, Sun-fixed                                                    b)  Cycler 2-5-1-3, Sun-fixed 
 

                              
                         c)  Cycler-4-3-1-20, Earth/Mars-fixed                                    d)  Cycler-2-5-1-3,  Earth/Mars-fixed 
 

                                                                             
                         e)  Cycler 4-3-1-20, near Earth view of c)                                  f)  Cycler-2-5-1-3, near Earth view of d) 

Figure 11: Top-down views of Cycler-4-3-1-20 and Cycler-2-5-1-3 

 
 

 
Figure 12:  Cycler-3-1-2-11 

 
Figure 13 summarizes the number of cyclers found for values of p from 1 to 6.  If Table 4 were 

expanded to include 5 and 6 synodic period cyclers, an additional 149 entries would be added.  These are 
documented in the Appendix.  In total, 2502 cyclers are found, 116 of which are totally ballistic and an 
additional 62 that are close.  Cyclers that are integer multiples of previously recorded cyclers are not 
included in these numbers.  For example, Cycler 4-6-2-5 is not included in Table 4 or Figure 13 because it 
is simply 2 cycles of Cycler-2-3-1-5.  
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Figure 13:  Number of Cyclers Found  vs. Period 

 
Some of the cyclers found with this method have been previously documented.  Cycler-2-1-1-5 

and Cycler-2-3-1-5 are identical to the “Case 2” and “Case 3” cyclers described by Byrnes3.  Although 
none appear in Table 4, the cyclers found by McConaghy et al2  are confirmed to be a subset of cyclers 
presented in this paper with h=0 and s=1.  Four of the six-synodic period cyclers are listed in Table A2 in 
the appendix.  Cycler-1-0-1-6, with a Turn Ratio of 0.86, is the Aldrin cycler7.   
 
CONCLUSIONS 
 

A systematic method for constructing ballistic and near-ballistic cyclers between Earth and Mars 
is presented.  The method combines the advantages of previous works into one more generalized approach, 
utilizing both the geometry associated with direct return velocity diagrams and the many solutions that arise 
from the multiple revolution Lambert’s problem.  The method only requires iterations on sub-problems and 
does not require an initial trajectory estimate.  It marches through the entire defined solution space of all 
feasible combinations of full, half, and symmetric return orbits that combine to form a cycler.  Free 
parameters associated with each unique combination of direct returns are then chosen to minimize the 
maximum required turning angle, thus maximizing the probability that the cycler is ballistic.  Of course, the 
resulting method is limited by imposed constraints in the problem formulation, thus several extensions are 
mentioned.  The main limitations of the method are that Mars encounters are guaranteed only once during 
each cycler period, gravity-assist maneuvers are not utilized at Mars or Venus, and the solutions are found 
using the simplest of solar system models.  The method is general in the sense that it encompasses many 
previously known Earth-Mars cyclers.  Additionally, including cyclers with periods of four synodic periods 
or less, 24 new ballistic cyclers are found.  These, along with the many near-ballistic cyclers, exhibit a wide 
range of energy and time characteristics, making them good candidates for a variety of potential 
applications.   
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APPENDIX 
 

Table A1: Five-synodic-period ballistic or near-ballistic cyclers 
ARMIN=0.9, and TRMIN=0.9 

Cycler- 
p-h-s-i 

Aphelion 
Ratio 

Turn 
Ratio 

  Earth→Mars  
(or aphelion)  
Time (days) 

v∞ at 
Earth 
(km/s) 

v∞ at Mars 
(km/s) 

Required Geocentric Turning Angle at each Flyby (deg) 

5- 1- 1-14 1.04 0.97 229 5.0 4.3 93 93
5- 1- 2-14 1.20 1.00 168 4.7 7.0 94 94 67
5- 1- 5- 8 1.44 0.92 133 5.2 9.2 95 95 28 28 28 28
5- 2- 1- 9 0.90 1.07 182 4.5 1.3 92 92
5- 2- 2-11 1.20 0.94 128 5.2 7.1 94 94 85
5- 2- 5- 7 1.43 0.91 118 5.3 9.2 95 95 37 37 37 37
5- 3- 1-12 0.92 1.17 270 3.8 1.4 92 92
5- 3- 3-10 1.07 1.19 195 3.6 4.7 93 93 47 47
5- 4- 1- 7 0.94 1.45 189 4.9 1.9 63 63 63
5- 4- 1- 9 1.12 1.06 122 7.0 6.3 64 64 64
5- 4- 3- 7 1.07 1.44 170 3.8 4.7 75 75 75 61 61
5- 5- 1-10 0.96 1.95 279 4.3 2.2 52 52 52 52
5- 5- 1-12 1.18 1.44 186 6.2 7.0 53 53 53 53
5- 5- 1-14 1.48 1.08 154 8.0 10.3 54 54 54 54
5- 5- 2-10 0.94 1.79 262 3.0 1.7 63 63 63 63 68
5- 5- 2-12 1.45 1.19 142 5.9 9.5 66 66 66 66 66
5- 5- 4- 8 1.44 1.10 134 5.3 9.3 78 78 78 78 35 35 35
5- 6- 1- 7 0.98 1.74 198 5.4 2.7 49 49 49 49
5- 6- 1- 9 1.20 1.23 107 7.7 7.6 49 49 49 49
5- 6- 1-11 1.49 0.90 82 9.8 11.0 50 50 50 50
5- 6- 2- 7 0.94 1.36 219 3.3 1.7 58 58 58 58 86
5- 6- 4- 7 1.43 1.16 116 5.4 9.2 73 73 73 73 46 46 46
5- 7- 1-10 1.02 1.78 245 4.8 3.6 52 52 52 52
5- 7- 1-12 1.30 1.27 169 7.0 8.5 53 53 53 53
5- 7- 1-14 1.71 0.93 142 9.1 11.9 54 54 54 54
5- 8- 1- 7 1.03 1.91 154 6.1 4.3 40 40 40 40 40
5- 8- 1- 9 1.31 1.30 94 8.6 9.1 41 41 41 41 41
5- 8- 1-11 1.72 0.92 73 11.0 12.6 42 42 42 42 42
5- 9- 1-10 1.10 2.09 204 5.6 5.7 40 40 40 40 40 40
5- 9- 1-12 1.48 1.38 154 8.0 10.3 42 42 42 42 42 42
5- 9- 1-14 2.15 0.93 130 10.5 13.8 45 44 44 44 44 45
5- 9- 2- 8 1.08 1.57 198 4.0 4.9 60 45 45 45 45 60 67
5- 9- 3- 6 1.44 1.16 137 5.5 9.3 72 45 45 45 45 72 46 46
5-10- 1- 7 1.11 1.94 123 6.9 6.2 35 35 35 35 35 35
5-10- 1- 9 1.49 1.25 82 9.8 10.9 36 36 36 36 36 36
5-10- 2- 7 1.07 1.71 160 4.3 4.9 59 59 59 59 59 59 59 59
5-10- 3- 7 1.43 1.24 112 5.7 9.3 66 45 45 45 45 66 60 60
5-11- 1- 8 1.24 1.76 177 6.6 7.8 41 41 41 41 41 41
5-11- 1-10 1.83 1.09 138 9.5 12.5 43 43 43 43 43 43
5-11- 2- 3 1.14 1.00 101 9.6 7.5 47 47 47 47 47 47 47 47
5-12- 1- 7 1.24 1.81 101 8.1 8.3 32 32 32 32 32 32 32
5-12- 1- 9 1.82 1.07 70 11.5 13.2 34 34 34 34 34 34 34
5-13- 1- 6 0.97 2.69 280 4.3 2.3 37 30 30 30 30 30 30 37
5-13- 1- 8 1.49 1.39 153 8.1 10.3 42 30 30 30 30 30 30 42
5-13- 2- 6 1.45 1.20 141 5.9 9.5 66 66 66 66 66 66 66 66
5-14- 1- 3 0.97 3.06 196 5.3 2.6 28 28 28 28 28 28 28 28
5-14- 1- 5 1.48 1.41 82 9.8 10.9 32 30 30 30 30 30 30 32
5-14- 2- 5 1.43 1.22 105 6.4 9.5 60 60 60 60 60 60 60 60
5-15- 1- 4 1.11 2.13 202 5.6 5.8 39 30 30 30 30 30 30 39
5-15- 1- 6 2.16 0.93 130 10.5 13.9 45 30 30 30 30 30 30 45
5-16- 1- 3 1.10 2.37 126 6.8 6.0 29 26 26 26 26 26 26 26 29
5-16- 1- 5 2.12 0.91 64 12.6 14.6 35 25 25 25 25 25 25 25 35
5-17- 1- 4 1.50 1.37 152 8.1 10.4 42 22 22 22 22 22 22 22 22 42
5-18- 1- 3 1.46 1.45 84 9.6 10.6 32 22 22 22 22 22 22 22 22 32  
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Table A2: Six-synodic-period ballistic or near-ballistic cyclers 
ARMIN=0.9, and TRMIN=0.9 

Cycler- 
p- h-s -i 

Aphelion 
Ratio 

Turn 
Ratio 

Earth→Mars 
(or aphelion) 
Time (days)

v∞ at Earth
(km/s) 

v∞ at Mars 
(km/s) 

    Required Geocentric Turning Angle at each Flyby (deg) 

6- 0- 1-23a 0.92 1.40 213 3.0 1.2 86

6- 0- 1-25b 1.03 1.22 179 4.0 3.9 85

6- 0- 1-27c 1.17 1.07 133 5.0 6.7 85

6- 0- 1-29d 1.34 0.93 111 6.0 8.7 84
6- 1- 2-10 1.09 0.91 203 4.9 5.4 93 93 100
6- 1- 3- 8 0.95 1.30 264 3.1 1.7 92 92 74 74
6- 1- 4- 8 1.07 1.16 197 3.8 4.8 93 93 57 57 57
6- 1- 6- 8 1.44 0.90 135 5.4 9.3 95 95 39 39 39 39 39
6- 2- 1-21 0.94 1.26 220 3.3 1.7 92 92
6- 2- 1-23 1.08 1.07 158 4.3 5.0 93 93
6- 2- 1-25 1.24 0.91 123 5.4 7.6 94 94
6- 2- 2-17 1.07 1.19 174 3.6 4.6 93 93 47
6- 2- 3-13 0.94 1.39 235 2.6 1.5 92 92 32 32
6- 2- 3-15 1.43 0.92 119 5.2 9.2 95 95 31 31
6- 2- 4-11 1.07 1.23 181 3.4 4.6 93 93 24 24 24
6- 2- 6- 9 1.43 0.93 123 5.1 9.1 95 95 16 16 16 16 16
6- 3- 4- 5 1.07 1.04 156 4.5 5.0 93 93 93 93 93
6- 4- 1-21 0.98 1.59 227 3.6 2.4 70 70 70
6- 4- 1-23 1.13 1.33 142 4.7 6.0 71 71 71
6- 4- 1-25 1.33 1.11 113 5.9 8.5 71 71 71
6- 4- 1-27 1.58 0.93 96 7.0 10.6 72 72 72
6- 5- 1- 6 0.95 1.62 283 6.2 2.4 47 47 47 47
6- 5- 1- 8 1.11 1.16 213 8.4 6.6 47 47 47 47
6- 5- 5- 6 1.44 1.15 137 5.5 9.3 73 73 73 73 46 46 46 46
6- 6- 1-19 1.02 1.82 189 3.9 3.5 58 58 58 58
6- 6- 1-21 1.20 1.48 128 5.2 7.1 59 59 59 59
6- 6- 1-23 1.45 1.21 104 6.4 9.6 60 60 60 60
6- 6- 1-25 1.78 0.99 89 7.7 11.7 61 61 61 61
6- 6- 2-15 1.19 1.38 141 4.3 6.8 72 72 72 72 46
6- 6- 2-17 1.77 0.96 99 6.6 11.3 74 74 74 74 45
6- 6- 5- 9 1.43 1.03 122 5.1 9.2 85 85 85 85 19 19 19 19
6- 7- 1- 6 0.98 1.49 289 6.7 3.1 47 47 47 47
6- 7- 1- 8 1.17 1.05 199 9.1 7.8 47 47 47 47
6- 7- 2- 3 0.91 0.98 176 5.1 1.5 62 62 62 91 91
6- 7- 3- 8 1.08 1.40 199 4.1 5.0 62 62 62 62 73 73
6- 7- 5- 5 1.43 0.99 107 6.1 9.4 62 62 62 62 77 77 77 77
6- 8- 1-17 0.91 2.39 211 2.9 1.0 51 51 51 51 51
6- 8- 1-19 1.08 1.89 158 4.3 5.0 53 53 53 53 53
6- 8- 1-21 1.30 1.50 116 5.7 8.3 54 54 54 54 54
6- 8- 1-23 1.62 1.18 95 7.2 10.8 55 55 55 55 55
6- 8- 1-25 2.09 0.94 81 8.6 13.1 57 57 57 57 57
6- 8- 3-11 1.07 1.47 179 3.4 4.6 77 60 60 60 77 32 32
6- 9- 1- 6 1.03 1.97 248 7.3 4.5 32 32 32 32 32 32
6- 9- 1- 8 1.26 1.35 186 10.0 9.1 33 33 33 33 33 33
6- 9- 1-10 1.57 0.98 161 12.4 12.4 34 34 34 34 34 34
6- 9- 2- 6 0.96 1.61 274 3.8 2.0 54 54 54 54 67 67 67
6- 9- 2- 8 1.47 0.94 150 7.2 10.0 56 56 56 56 69 69 69
6- 9- 4- 6 1.45 1.21 139 5.7 9.4 67 45 45 45 45 67 56 56 56
6-10- 1-15 0.94 2.31 219 3.3 1.7 50 45 45 45 45 50
6-10- 1-17 1.15 1.76 137 4.9 6.4 52 45 45 45 45 52
6-10- 1-19 1.44 1.34 104 6.4 9.6 54 45 45 45 45 54
6-10- 1-21 1.89 1.02 86 8.1 12.2 56 45 45 45 45 56
6-10- 2-11 0.94 1.84 231 2.7 1.5 69 45 45 45 45 69 47
6-10- 2-13 1.43 1.17 115 5.4 9.2 72 45 45 45 45 72 46
6-10- 4- 9 1.43 1.06 121 5.2 9.2 83 45 45 45 45 83 24 24 24
6-11- 1- 6 1.09 1.75 219 8.2 6.2 33 33 33 33 33 33
6-11- 1- 8 1.38 1.17 173 11.0 10.7 33 33 33 33 33 33
6-11- 2- 3 0.98 1.61 191 6.1 2.9 48 48 48 48 48 48 48 48
6-12- 1-13 1.00 2.14 232 3.7 2.7 51 36 36 36 36 36 51
6-12- 1-15 1.26 1.57 120 5.5 7.8 53 36 36 36 36 36 53
6-12- 1-17 1.67 1.15 92 7.4 11.1 55 36 36 36 36 36 55
6-13- 1- 3 1.08 0.94 79 16.7 9.7 22 22 22 22 22 22 22 22
6-13- 1- 4 0.90 3.44 276 5.4 1.5 25 25 25 25 25 25 25 25
6-13- 1- 6 1.18 1.92 198 9.2 7.9 26 26 26 26 26 26 26 26
6-13- 1- 8 1.58 1.21 160 12.4 12.5 27 27 27 27 27 27 27 27
6-13- 2- 6 1.10 1.65 202 5.0 5.4 55 55 55 55 55 55 55 55
6-13- 3- 6 1.46 1.06 143 6.1 9.6 60 30 30 30 30 30 30 60 72 72
6-14- 1-13 1.08 1.93 158 4.3 4.9 52 30 30 30 30 30 30 52
6-14- 1-15 1.44 1.34 104 6.4 9.6 54 30 30 30 30 30 30 54
6-14- 1-17 2.09 0.94 81 8.6 13.1 57 30 30 30 30 30 30 57
6-14- 2- 9 1.07 1.59 175 3.6 4.6 70 30 30 30 30 30 30 70 47
6-14- 3- 7 1.43 1.10 119 5.2 9.2 79 30 30 30 30 30 30 79 31 31
6-15- 1- 3 1.11 0.90 74 17.2 10.4 22 22 22 22 22 22 22 22
6-15- 1- 4 0.95 3.00 285 6.3 2.6 25 25 25 25 25 25 25 25
6-15- 1- 6 1.32 1.57 179 10.5 10.0 26 26 26 26 26 26 26 26
6-15- 1- 8 1.94 0.94 147 14.3 14.8 28 28 28 28 28 28 28 28
6-15- 2- 3 1.11 1.27 117 7.7 6.4 39 39 39 39 39 48 48 48 48
6-16- 1-11 1.20 1.67 128 5.2 7.1 53 26 26 26 26 26 26 26 53
6-16- 1-13 1.78 1.08 89 7.7 11.7 56 25 25 25 25 25 25 25 56
6-17- 1- 3 1.14 1.06 69 17.9 11.3 17 17 17 17 17 17 17 17 17 17
6-17- 1- 4 1.04 2.91 241 7.5 4.8 21 21 21 21 21 21 21 21 21 21
6-17- 1- 6 1.59 1.24 160 12.5 12.6 26 22 22 22 22 22 22 22 22 26
6-17- 2- 4 1.48 1.30 149 7.3 10.1 48 45 45 45 45 48 50 50 50 50 50
6-18- 1- 7 0.94 2.32 219 3.3 1.7 50 22 22 22 22 22 22 22 22 50
6-18- 1- 9 1.44 1.34 104 6.4 9.5 54 22 22 22 22 22 22 22 22 54
6-18- 2- 7 1.43 1.17 116 5.4 9.2 72 22 22 22 22 22 22 22 22 72 46
6-19- 1- 3 1.19 0.97 64 18.8 12.5 17 17 17 17 17 17 17 17 17 17
6-19- 1- 4 1.20 2.09 195 9.4 8.2 23 22 22 22 22 22 22 22 22 23
6-19- 2- 3 1.47 1.18 79 10.6 11.1 35 35 35 35 35 35 35 35 35 35 35 35
6-20- 1- 1 0.93 1.09 183 12.8 5.0 29 20 20 20 20 20 20 20 20 20 29
6-20- 1- 7 1.07 1.94 160 4.3 4.9 52 20 20 20 20 20 20 20 20 20 52
6-20- 1- 9 2.08 0.94 81 8.6 13.0 57 20 20 20 20 20 20 20 20 20 57
6-21- 1- 3 1.29 1.01 57 20.3 14.4 14 14 14 14 14 14 14 14 14 14 14 14
6-21- 1- 4 1.63 1.19 158 12.7 12.9 27 18 18 18 18 18 18 18 18 18 18 27
6-22- 1- 5 1.43 1.35 105 6.4 9.5 54 18 18 18 18 18 18 18 18 18 18 54

 a  “Cycler 6S9” described by McConaghy2 et al.
 b  “Cycler 6S8” described by McConaghy2 et al.
 c  “Cycler 6S7” described by McConaghy2 et al.
d  “Cycler 6S6” described by McConaghy2 et al. 
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