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Differentiate (1) with respect to z, denoting z differentiation by pr1
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To obtain a differential equation in voltage alone, I may be substituted from (1)

and I’ from (2). The result is
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differential equation in I': |
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If Z' and Y’ are zero, (4) and (5) reduce, as they should, to the eq:;;gzgng the
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Example515__ ———
Line with Exponentially Varying Properties
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Let us consider a loss-free exponential line with Z and Y varying as follo
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These variations yield constant values'of ZY, Z'/Z, and Y'/Y s0 that (4)
become equations with constant coefficients,
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These have solutions of the exponentially propagating form, J
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We see the interesting property of “cutoff” again, for y; and y, are purely real
for low frequencies w < w, where

2
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The attenuation represented by these real values, like that for the loss-free filter-
type lines, is reactive. This represents no power dissipation but only a continuous
reflection of the wave. For o > w,, however, the values of y have both real and
imaginary parts, which is a different behavior from that of the loss-free filters.
Again the real parts represent no power dissipation (see Prob. 5.15b). The values
of y approach purely imaginary values representing phase change only for
> ,.

The greatest use of this type of line is in matching between lines of different
characteristic impedance. Unlike the resonant matching sections (Prob. 5.5¢), this

type of matching is insensitive to frequency. Note the variation of characteristic
impedance
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Thus Z, can be changed by an appreciable factor if gz is large enough. The
transmission line approximation will become poor, however, if there is too large a
change of Z and Y in a wavelength, or in a distance comparable to conductor
spacing.

The design of nonuniform matching sections is explored in detail in Ref. 8.

PROBLEMS
5.2a Sketch the function
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versus wz/v for values of wt = 0, /2, n, 3n/2 and explain how this shows traveling-wave
behavior.
5.2b (i) Derive an expression for the characteristic impedance of the parallel-plate line in
Fig. 52 having a width w and spacing a neglecting the internal inductance of the
conductors. Thin-film transmission lines in some computer circuits can be modeled
approximately by the parallel-plane line. The line width is usually about 5 um and the
spacing is by means of dielectric of 1 um thickness and relative permittivity of 2.5 (as is
usually true for dielectrics, the relative permeability can be taken as ~1.0).

(ii) Calculate the characteristic impedance Z, and wave velocity v.

(iii) Suppose the dielectric thickness is halved and find the new values of Z, and v.
A better model for such lines is given in Chapter 8.

*R.E. Collin, Foundations for Microwave Engineering, McGraw-Hill, New York, 1966, Chapter 5.




